

Giant Planets

made mostly of H, He and H-compounds, no solid surface 99.5% planet mass, 99.8% solar system angular momentum

Equation of state determines mass-radius relation

Ideal gas: $P \propto \rho T$ +Fusion: T_{core} ~ Const → R ∝ M

el. degeneracy: P $\propto \rho^{5/3}$ $\rightarrow R \propto M^{-1/3}$

Coulomb: $\rho \sim Const$ $\rightarrow R \propto M^{1/3}$

Working definition: Brown-dwarfs are 'failed' stars that cannot ignite hydrogen (but can burn deuterium); hence $M < 80 M_J (0.08 M_\odot)$

Planets cannot burn deuterium (10⁶ K); hence $M < 13 M_{1}$

Are planets just gas balls like stars? Probably not.

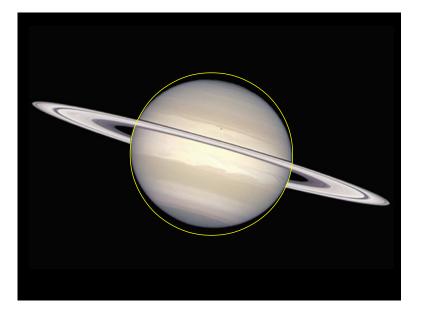
Jupiter & Saturn: largely degenerate H & He, mean $\rho = 1.3 \& 0.7 \text{ g/cm}^3$

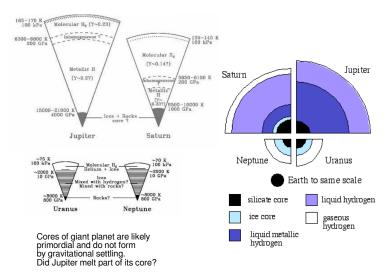
-- hydrogen metallic (conductive) below certain depth (?)

-- core: solid, heavy metal + ices Jupiter's core: < 10 M_F (or 0?); Saturn's core: ~ 13 M_F (15% of mass)

Uranus & Neptune: largely ices (H₂O, CH₄, NH₃), mean ρ = 1.2 & 1.7 g/cm³

-- relatively thin gaseous H & He envelope -- mostly icy + rocky core


Why do we care about the solid cores?


Formation of giant planets likely starts with a solid core - unlike stars

How do we figure out about the cores? Spin it!

core: a high density central region spherical body: gravitational potential is independent of density profile but when the planet rotates, it oblateness depends on $\rho = \rho(\mathbf{r})$

 $\Phi(\theta) = -\frac{GM}{r} \left[1 - \left| \frac{R}{r} \right|^2 J_2 P_2(\cos \theta) - \left| \frac{R}{r} \right|^4 J_4 P_4(\cos \theta) - \dots \right]$

Energy budget for giant planets

Absorb solar flux: $(1-A)4\pi R_o^2 \sigma T_o^4 \times \frac{\pi R_o^2}{4\pi a^2}$	
Emit blackbody flux: $4\pi R_p^2 \sigma T_p^4$	
$T_{p} = (1-A)^{1/4} \left(\frac{R_{o}}{2a}\right)^{1/2} T_{o}$	

passive T _n	Jupiter 113K	Saturn 83K	Uranus 60K	Neptune 48K
actual T _p	130K	95K	59K	59K
L _{total} /L _{received}	1.7	1.8	1.0	2.6

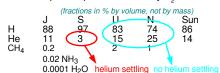
3 sources of planetary intrinsic luminosity: primordial + settling + radio-active

Jupiter: **primordial heat** + He settling relative to H (very long thermal time-scale: ~10⁹ yrs)

Saturn: primordial heat + He settling relative to H

Uranus: no additional source required

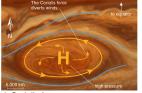
Neptune: Do require add'I source; but so similar to Uranus, so why?

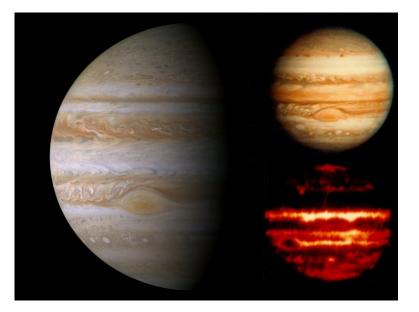

--- what about gravitational contraction? No, already shrunk

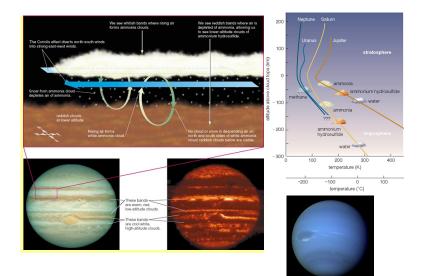
--- terrestrial planets: radio-active elements

--- how much energy can you gain by separating H & He?

Gas giant atmospheres


All 4 have deep atmospheres with mostly H_a & He

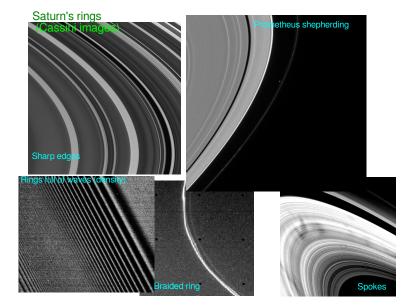


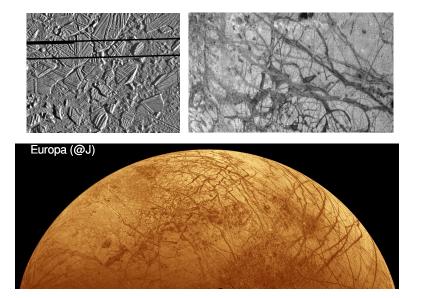

- 1) Trace gases condense into **clouds** at diff. temperature Clouds are also passive tracers of local wind pattern
- 2) Jupiter, Saturn & Neptune have strong zonal winds (up to 500 m/s) zonal winds driven by solar irradiation, a combination of cold pole -- hot equator pressure gradient & Coriolis force: great red-spot of Jupiter: a giant anti-cyclonic vortex, surprisingly long-lived cyclone: 2 V x Ω = - ∇ P/ρ; fornado: V²/r = - ∇ P/ρ

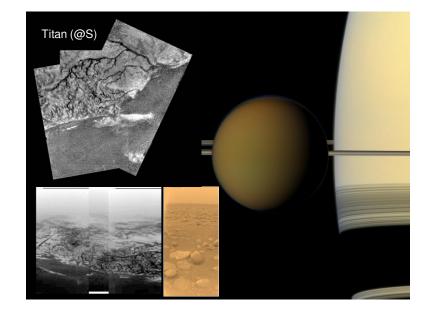
Other cool points?

- 1) magnetic fields: all 4 have appreciable B fields, Jovian aurorae,
- Jupiter's magnetic influence extends past Saturn orbit generation of these fields -- primordial or dynamo?

2) seasons:


Uranus: 97.92° inclined relative to orbit, very weird seasons!




- 3) rings & satellites: all 4 have rings and many satellites rings: sandy or icy dust and some boulders, 2.5 planet radii (~Roche radius)
 -- H/R ~ 10⁻⁶ (a razor blade?)
 -- gaps: shepherding moons
 -- origin: tidally disrupted satellites or primordial?

Satellites: worlds of their own captured (Phoebe) or formed in-situ Europa (@J): cracky surface underground H₂O ocean Titan (@S): smoggy atmosphere surface H-compound ocean?

