Stellar Graveyard

White Dwarfs **Neutron Stars Black Holes**

A neutron star in the Supernova Remnant Puppis A

A white dwarf in NGC2440 planetary nebula

White Dwarfs (they are out there)

- -- remaining cores of low-mass ($M < 8M_{\odot}$) stars Very little H and He, mostly C and O (some have mostly He)
- --- ~10¹⁰ in the galaxy, closest known Sirius B from movement of Sirius A (brightest on sky, 2.6pc) --> Sirius B has M ~ 1 M_o
- -- white dwarfs are small (and therefore dim: $L = 4\pi R^2 \sigma T^4$) Sirius A: main-sequence $T_A \sim 12,000K$ Sirius B: white dwarf $T_B \sim 25,000K$ Sirius B: $R \sim 4300$ km $\sim 1/200$ R_{\odot}
- -- White dwarfs are dense typically $M \sim 0.6 M_{\odot}$ $\dot{R} \sim R_{\oplus} \sim 0.01 R_{\odot}$

 $\rho \sim 10^{6} \text{ g/cm}^{3}$ (1 sugar-cube = 1 tonne)

e- pressure ionized e- degenerate

(-ray

Finding white dwarfs by their fast proper motion 1987 1994

Cooling Death of White Dwarfs

Shines because of cooling of the star --> thermal (Kelvin-Helmholtz) timescale ~ Hubble time (10 Gyr) to cool to few 10³ K (why do WDs not contract as they cool?)

Cooling may lead C/O core to crystallize "stellar-mass diamond"

White Dwarf Population in Globular Cluster M4 Bright tars Evolving t ntrinsic Brightness _<u></u> = 10 0 2 4 6 -2 Bluer Color/Temperature (U-I) Redder

M4: a globular cluster 13 Gyr in age (older than the Galaxy), all stars > 0.8 M are white dwarfs now

Neutron Stars

-- core collapse at end of massive star (8 $M_{\odot} < M < 25 M_{\odot}$?) -- produces a "huge nucleus," mostly made of neutrons $p^+ + e^- \rightarrow n + v_{e}$ M~1.4 M_{\odot}, R~10 km, ρ ~ 3x10¹⁴ g/cm³ (extremely dense, > nuclear density) -- supported by pressure from degenerate neutrons (fermions) $\hbar/m_n v > d \sim 1/n_n^{-1/3}$ and by strong-force repulsion why much denser than a white dwarf? -- exotic physics: superfluid, superconductor + pions, Kaons, quarks? $-10^7 \sim 10^8$ in the galaxy, nearest @ ~ 10 ~ 20 pc (nearest known @ 150 pc) $L = 4 \pi R^2 \sigma T^4$ very difficult to find by thermal radiation in optical, but....

1951

A near-by neutron star (your prof., 2000)

Sketch of structure of neutron star (Heiselberg 2002)

Neutron Stars (pulsars)

first discovered as 'pulsars' (1967): many (all?) neutron stars are somehow endowed with both a fast spin and a strong magnetic field

MPIfR-Bonn Pulsar Group

radio photons produced in the magnetic cone

rotation periods: 1.6 ms - 10 s

B-field: ~10⁹ ~10¹³ G

rotation + B --> shines like a lighthouse beacon

Now know few thousand pulsars pulsar astronomy: neutron star physics binary star evolution, galactic structure, interstellar medium....

Jodrell Bank 72m radio telescope

Neutron Stars (Magnetic fields)

Pulsar field strengths at birth 10¹²~10¹³G

Earth field ~ 1 G Solar field ~ 1 G (strongest point ~ 10^3 G) strongest man-made field ~ 10⁵G galaxy field ~ 10⁻⁶ G universe field ~ ?

How does the pulsar B arise? Flux conservation? Dynamo?

Magnetars (C. Thompson, UofT):

The Crab Pulsar-wind Nebula

~ $10^{14} - 10^{15}$ G, rotate ~ 10 s, $B^2R^3 >> I \Omega^2$, QED field... Sudden detwisting of the field (crust cracking; star quakes) produces γ -ray outbursts First one seen on 1979 March 8.

Also slightly less magnetized varieties (possibly descendants): ~ half a dozen known, young and nearby, cooling radiation seen by X-ray satellites

Black Holes - a space-time singularity

How do stellar-mass black-holes come about?

- More massive stars -> more massive neutron stars(?)
- When NS mass > critical mass, no known pressure support
- Further collapse into a BH (SN1987A?)

Black-Hole: even photons can't escape: $v_{esc}^2 = 2GM/R > c^2$ within a certain distance (photons have no mass, why care about grav. potential?)

Define Schwarzschild radius $R_c = 2GM/c^2$ "event horizon" (definition) textbook: who kills the astronaut with a torch-light? tidal stretching, photon redshift, time dilation

- Discovered as they are accreting gas from a companion Gas gets hot and radiates before it disappears.

Black Holes (Active Galactic Nuclei)

New: ~ every galaxy harbors a massive BH at its center 1) BH mass $10^6 - 10^{10} M_{\odot}$ rises with M_{galaxy}

2) How to find? How to measure mass? Active galactic nuclei: accrete gas & stars, and shines (if outshines the galaxy - quasar) 4) Center of Milky Way, M_{BH}~ 3x10⁶ M_☉

5) Origin? Amalgamation of stellar mass BHs? Heavy BHs form in early universe?

Bizarre effects associated with BHs

1) Centre: GR fails, need quantum gravity

- 2) Spinning black hole space-time dragging
 3) Quantum fluctuation of the vacuum &
- the evaporation of a black hole
- (Hawking Radiation) 4) Magnetic field threading the BH?
- 5) Warp-drive?

Rejuvenation of Compact Objects

cataclysmic variable (around a WD)

X-ray binary (around a NS or a BH)

binary = WD + giant star, mass transferred to WD Novae: thermal nuclear run-away at surface of WD, L~ 10⁵ L_o, gradual decline, recursive

Second death of degenerate objects

Type Ia supernova binary = WD + ? (giant, WD, MS...), Fusion ignited when WD ~ 1.4 M_{\odot} ? Or by heat from merger? L ~ $10^{10} L_{\odot}$

WD destroyed, all metals returned to ISM "standarizable candle" to measure cosmological distances

Second death of degenerate objects (cont'd)

- Mergers of NS+NS and NS+BH
- → gamma-ray burst, "kilonova"

ough for a burst of trogen fusion

- creation/dispersion of heavy elements
- Now detected by Gravitational wave observatories!

Laser Interferometer Gravitational-wave Observatory (LIGO). Also VIRGO. And space (LISA) coming along...

Extra Notes: Origin of the Elements

- 1) Big Bang Hydrogen, helium, and a smattering of Li.
- 2) Low mass stars Outer envelope ejected when white dwarf is formed. Heavier elements formed by slow bombardment with neutrons during helium shell burning.
- 3) High mass stars
- Imprimass stars
 https://en.wikipedia.org/wiki/Nucleosynthesis

 Outer envelope ejected during supernova
 bytps://en.wikipedia.org/wiki/Nucleosynthesis

 By Cmglee Own work, CC BY-SA 3.0,
 bttps://commons.wikimedia.org/windex.php?curid=31761437
 made beforehand; further ones made during explosion.
- 4) Exploding (merging?) white dwarf Whole object disrupts. Fusion powering explosion produces Si and Fe group elements (most stable given density/temperature).
- 5) Merging neutron stars About a percent of neutron-star material escapes and decays to the heaviest still stable nuclei.
- 6) Cosmic ravs Breaks elements apart. Only important for those present in trace quantities.

