Stars: beyond the Main Sequence

2.0

Hipparcos HRD

3.5 Pols et al., 1995,

MNRAS, 274, 964

B · V [mag]

Understanding stellar structure & evolution (a success story of 20th century astrophysics)

Founded on theory: hydrostatic equilibrium nucleosynthesis radiative transport (photon-matter interaction) equation of state (behaviour of matter) classical physics + quantum mechanics

Confirmed by observations: absorption spectra, spectral types color-magnitude diagram, stellar pulsation, binary stars, stellar clusters...

A star becomes a giant (much bigger & brighter) after the MS

1) Main-sequence: sun 70% H, 28% He to start with

Core-hydrogen burning phase lasts ~ 80-90% of total life-time. More massive stars live shorter (Sun ~ 10^{10} yrs) Subtle rise in Luminosity as Helium fraction increases (why?, $\mu \rightarrow$ HE!)

2) Core-hydrogen exhaustion: the end of the Main Sequence

Helium burning requires higher temperature (*why?*, ~10⁸ K) Core contracts in thermal timescale ($t_{KH} \sim E_{th}/L$, *why not* t_{dyn} ?) For mass above ~2 M_☉, heats up sufficiently to ignite He; Below, core becomes degenerate first (next lecture)

3) Shell (around core) heats up to 10⁷ K

Shell burning $H \rightarrow He$

For low-mass stars, rate >> main-sequence -> giant (next lecture)

4.5

log T_{eff} (K)

High-mass star (M > 8 M_{\odot}) fusion all the way from H \rightarrow Fe

Fuel	T _c	ρ _c	Time	L _v /L _☉	For 25 M $_{\odot}$ star:
	(K)	(g/cm ³) (yr)		
Н	4x10 ⁷	5	7x10 ⁶	small	~20 $ m R_{\odot}$, ~10 ⁵ $ m L_{\odot}$, few 10 ⁶ yr
He	2x10 ⁸	700	5x10 ⁵	small	(MS: as O&B spectral types)
С	6x10 ⁸	2x10 ⁵	600	8.3	
Ne	1.2x10 ⁹	4x10 ⁶	1	6.5x10 ³	giants: ~500 R $_{\odot}$, ~10 5 L $_{\odot}$
0	1.5x10 ⁹	1x10 ⁷	0.5	1.9x10 ⁴	(core & shell burning,onion-shells,
Si	2.7x10 ⁹	3x10 ⁷	1 day	3.2x10 ⁶	centre burned till Fe)

Supernova: $T_c > 5x10^9$ K, nuclei photo-disintegrated (undo all previous burning, neutrinos escape)

Neutron Stars	(neutrons only ~ 1.4 M_{\odot} , ~ 10 km)
or Black Holes	(space-time singularity, even photons cannot escape)

+ Supernova remnant (~1-10 M_{\odot} , expansion @ ~10000 km/s, shines for ~ 10⁴ yr) net effect of a star's life:mass loss + SN -- metal enrichment of the interstellar medium

Supernova ---- irreversible violent collapse

- Past Fe, nuclear burning endothermic, the very hot (~5x10⁹ k) core (~5000 km) loses pressure support because:

 a) photo-disintegration of nuclei undo previous nuclear fusion, Fe + γ → α's + p⁺ + n
 - b) electron capture into neutrons e squeezed into p+, loose e degen. P, produce v
 - c) neutrino leakage out of the star $\sigma \sim 10^{-48}$ m², *reaction irreversible*
 - core collapse proceeds in dynamical time-scale: $\tau_{dyn} \sim 1/(G\rho)^{1/2} \sim 10$ sec not thermal time-scale (like low-mass star cores)
- 2) Core collapse (to ~ 10 km) induces Supernova explosion total SN energy: release of grav. energy ~ 10^{46} J unbinding the envelope ~ 10^{44} J (ejecta final kinetic energy ~ 10^{42} J) photons: 10^{10} L_o (~L_{galaxy}) for ~10 days ~ 10^{44} J SN 1054 (Crab Nebula, ~ 2kpc): ancient Chinese reports: seen during day time 99% of the energy: neutrinos (v) L_v~ 10^{19} L_o SN 1987A (Large Megellanic Cloud): 11 v detected supernova remnant: SN ejecta hits interstellar gas
- 3) Neutron star supported by neutron degeneracy pressure plus strong force
- Current investigations: Why do SN explode? Does it leave a NS or BH? NS are born with v~ 300 km/s, what kicks it? Some NS with ultrastrong magnetic fields; why?

SN rate: ~ 1/50yr/galaxy last observed one in Milky Way: 1640 (Kepler)

(two further younger remnants known)

SN 1987A in the Large Magellanic Cloud..... and 4 years later

Supernova 1987A Rings

Local Bubble (Huff & Frisch)

500 pc