
1. Hydrostatic equilibrium and virial theorem

Textbook: §10.1, 2.4
Assumed known: §2.1–2.3

Equation of motion in spherical symmetry

ρ
d2r

dt2
= −GMrρ

r2
− dP

dr
(1.1)

Hydrostatic equilibrium

dP

dr
= −GMrρ

r2
(1.2)

Mass conservation

dMr

dr
= 4πr2ρ (1.3)

Virial Theorem

Epot = −2Ekin or Etot =
1

2
Epot (1.4)

Derivation for gaseous spheres: multiply equation of hydrostatic equilibrium by r on both sides,
integrate over sphere, and relate pressure to kinetic energy (easiest to verify for ideal gas).

For next time

– Read derivation of virial theorem for set of particles (§2.4).
– Remind yourself of interstellar dust and gas, and extinction (§12.1).
– Remind yourself about thermodynamics, in particular adiabatic processes (bottom of p. 317 to

p. 321).



Fig. 1.1. The HRD of nearby stars,
with colours and distances measured
by the Hipparcos satellite. Taken
from Verbunt (2000, first-year lecture
notes, Utrecht University).



Fig. 1.2. Observed HRD of the stars
in NGC 6397. Taken from D’Antona
(1999, in “The Galactic Halo: from
Globular Clusters to Field Stars”,
35th Liege Int. Astroph. Colloquium).

Fig. 1.3. HRD of the brightest stars in the LMC, with observed spectral types and magnitudes transformed
to temperatures and luminosities. Overdrawn is the empirical upper limit to the luminosity, as well as a
theoretical main sequence. Taken from Humphreys & Davidson (1979, ApJ 232, 409).



2. Star formation

Textbook: §12.2

Jeans Mass and Radius

MJ =

(

3

4π

)1/2 (
5k

GµmH

)3/2
T 3/2

ρ1/2
= 29M⊙ µ−2

(

T

10K

)3/2
( n

104 cm−3

)−1/2

, (2.1)

RJ =

(

3

4π

5k

GµmH

)1/2
T 1/2

ρ1/2
= 0.30 pc µ−1

(

T

10K

)1/2
( n

104 cm−3

)−1/2

. (2.2)

Dynamical or free-fall timescale

tff ≃
√

R3

GM

(

exact:

√

3π

32Gρ
; often also: ∼

√

1

Gρ

)

. (2.3)

Pulsation time scale

tpuls ≃
R

cs
≃

√

1

γGρ

(

usually simply: ∼
√

1

Gρ

)

. (2.4)

Contraction or Kelvin-Helmholtz timescale

tKH =
−Epot

L
≃ GM2

RL
(2.5)

For next time

– Think about initial mass-radius relation;
– Remind yourself about pressure integral (§10.2, in particular eq. 10.9), as well as mean molecular

weight; and
– Remind yourself of relativistic energy and momentum (§4.4)



Fig. 2.1. (top) Images towards the
dark globule Barnard 68 in B, V, I, J,
H, and K (clockwise from upper left
to lower left). The images are 4.′9 on
the side; North is up, East to the left.

Fig. 2.2. (left) Inferred extinction
through Barnard 68. Contours of V-
band optical depth are shown, start-
ing at 4 and increasing in steps of 2.
Both pictures are taken from ESO
press release 29/99.



3. Equation of state

Textbook: §10.2, 16.3

General expressions for number density, pressure, and energy

Given a momentum distribution n(p)dp, then the particle density n, kinetic energy density U , and
pressure P are given by

n =

∫ ∞

0

n(p)dp, (3.1)

U =

∫ ∞

0

n(p)ǫp dp, (3.2)

P =
1

3

∫ ∞

0

n(p)vpp dp. (3.3)

For non-relativistic particles, vp = p/m and ǫp = p2/2m, while for (extremely) relativistic particles,
vp ≃ c, and ǫp = pc. Hence,

PNR =
1

3

∫ ∞

0

2ǫpn(p)dp ⇒ P =
2

3
U, (3.4)

PER =
1

3

∫ ∞

0

ǫpn(p)dp ⇒ P =
1

3
U. (3.5)

General momentum distribution

n(p)dp = n(ǫ)
g

h3
4πp2dp (where g is the statistical weight). (3.6)

Here, n(ǫ) depends on the nature of the particles:

n(ǫ) =























1

e(ǫ−µ)/kT + 0
classical; Maxwell-Boltzmann statistics,

1

e(ǫ−µ)/kT + 1
fermions; Fermi-Dirac statistics,

1

e(ǫ−µ)/kT − 1
bosons; Bose-Einstein statistics.

(3.7)

Here, µ is the chemical potential; one can view the latter as a normalisation term that ensures
∫∞
0 n(p)dp = n.

Classical: Maxwellian

After solving for µ, one recovers the Maxwellian momentum distribution:

n(p)dp = n
4πp2dp

(2πmkT )3/2
e−p2/2mkT (3.8)

Bosons: application to photons

For photons, the normalisation is not by total number of particles, but by energy; one finds µ = 0.
The statistical weight is g = 2 (two senses of polarisation). With ǫ = hν and p = hν/c, one finds for



n(ν)dν and U(ν)dν = hνn(ν)dν,

n(ν)dν =
4πν2dν

c3
2

ehν/kT − 1
; (3.9)

U(ν)dν =
8πhν3

c3
dν

ehν/kT − 1
. (3.10)

Fermions: application to electrons

n(p)dp =
g

h3
4πp2dp

e(ǫ−µ)/kT + 1
. (3.11)

Complete degeneracy

n(ǫ) =

{

1 for ǫ < ǫF

0 for ǫ > ǫF

}

⇔ n(p) =

{ g

h3
4πp2dp for p < pF

0 for p > pF
. (3.12)

Expressing pF as a function of the number density n,

pF = h

(

3n

4πg

)1/3

. (3.13)

NRCD: non-relativistic complete degeneracy

For non-relativistic particles, one has ǫp = p2/2m, and thus P = 2
3U . Hence,

P =
2

3

∫ pF

0

n(p)ǫp dp =
1

20

(

3

π

)2/3
h2

m
n5/3. (3.14)

For electrons: Pe = K1(ρ/µemH)
5/3 with K1/m

5/3
H = 9.91× 1012 (cgs). (3.15)

ERCD: extremely relativistic complete degeneracy

For relativistic particles, ǫp = pc, and thus P = 1
3U (Eq. 3.5). Hence,

P =
1

3

∫ pF

0

n(p)ǫp dp =
1

8

(

3

π

)1/3

hc n4/3. (3.16)

For electrons: Pe = K2(ρ/µemH)
4/3 with K2/m

4/3
H = 1.231× 1015 (cgs). (3.17)

For next time

– Is degeneracy importantant for daily materials?



Fig. 3.1. The distribution of the
number of particles n(p) as a
function of momentum p for a
number of values of µ/kT .

Fig. 3.2. The T, ρ diagram for
X = 0.7 and Z = 0.02, with
the areas indicated where mat-
ter behaves as an ideal gas
(P ∝ nT ), non-relativistic de-

generate gas (P ∝ n
5/3
e ), rel-

ativistic degenerate gas (P ∝
n
4/3
e ), or radiation-dominated

gas. Note that these are not
“sharp” boundaries. Also, at
high enough T relativistic ef-
fects will become significant at
all densities, not just for degen-
erate matter.



Fig. 3.3. T, ρ diagram for X = 0.7 and Z = 0.02 from Pols et al. (1995, MNRAS 274, 964). Dashed
lines indicates where radiation pressure equals the gas pressure (Pg = Pr), and where degeneracy becomes
important (ψ = 0); note that the latter is defined differently. The shaded regions indicate regions where
various ions become ionised. None of the other lines were discussed in the text. Dash-dotted lines indicate
constant plasma-interaction parameter Γ; dotted lines constant contribution from Coulomb interactions;
thin solid lines constant contribution from pressure ionisation. The thick solid lines indicate the run of
temperature as a function of temperature as found in zero-age main sequence (ZAMS) stellar models for
several masses.



4. Simple stellar models

Textbook: – p. 334–340, applications in §16.4

Polytropic models

Mr = − r2

ρG

dP

dr
⇒ dMr

dr
= − 1

G

d

dr

(

r2

ρ

dP

dr

)

dMr

dr
= 4πr2ρ

P = Kργ



























⇒ 1

ρr2
d

dr

(

r2ργ−2 dρ

dr

)

= −4πG

Kγ
. (4.1)

Making the equation dimensionless, we derive the Lane-Emden equation of index n,

ρ = ρcθ
n with n =

1

γ − 1

(

i.e.,γ = 1 +
1

n

)

r = αξ with α =

(

n+ 1

4πG
Kρ(1/n)−1

c

)1/2















⇒ 1

ξ2
d

dξ

(

ξ2
dθ

dξ

)

= −θn. (4.2)

The boundary conditions are θc = 1 and (dθ/dξ)c = 0.

Solutions of the Lane-Emden equations

In general, the Lane-Emden equation does not have an analytic solution, but needs to be solved
numerically. The exceptions are n = 0, 1, and 5, for which,

n = 0 (γ = ∞) : θ = 1− ξ2

6
⇒ ρ = ρc,

n = 1 (γ = 2) : θ =
sin ξ

ξ
⇒ ρ = ρc

sinαr

αr
,

n = 5 (γ = 1.20) : θ =

(

1 +
ξ2

3

)−1/2

⇒ ρ = ρc

(

1 +
(αr)2

3

)−5/2

.

(4.3)

The stellar radius

Since one has r = αξ, the stellar radius is given by

R = αξ1 =

[

(n+ 1)K

4πG

]1/2

ρ(1−n)/2n
c ξ1, (4.4)

where ξ1 is the value of ξ for which θ(ξ) reaches its first zero. In Table 4.1, values of ξ1 are listed
for various n.

The total mass

Integration of ρ(r) gives the total mass of the star,

M = 4πα3ρc

∫ ξ1

0

ξ2θndξ = 4πα3ρc

∫ ξ1

0

d

(

−ξ2 dθ
dξ

)

= 4π

[

(n+ 1)K

4πG

]3/2

ρ(3−n)/2n
c

(

−ξ2dθ
dξ

)

ξ1

(4.5)



Table 4.1. Constants for the Lane-Emden functions

n γ ξ1 −ξ2 dθn
dξ

∣

∣

∣

∣

ξ1

ρc
ρ

K
R(n−3)/n

GM (n−1)/n

Pc

GM2/R4

0.0 ∞ 2.4494 4.8988 1.0000 . . . 0.119366
0.5 3 3.7528 3.7871 1.8361 2.270 0.26227
1.0 2 3.14159 3.14159 3.28987 0.63662 0.392699
1.5 5/3 3.65375 2.71406 5.99071 0.42422 0.770140
2.0 3/2 4.35287 2.41105 11.40254 0.36475 1.63818
2.5 7/5 5.35528 2.18720 23.40646 0.35150 3.90906
3.0 4/3 6.89685 2.01824 54.1825 0.36394 11.05066
3.5 9/7 9.53581 1.89056 152.884 0.40104 40.9098
4.0 5/4 14.97155 1.79723 622.408 0.47720 247.558
4.5 11/9 31.83646 1.73780 6189.47 0.65798 4922.125
5.0 6/5 ∞ 1.73205 ∞ ∞ ∞

Taken from Chandrasekar, 1967, Introduction to the study of stellar structure
(Dover: New York), p. 96

where we used the Lane-Emden equation to substitute for θn. Values of (−ξ2dθ/dξ)ξ1 are again
listed in Table 4.1. By combining the relations for the radius and the mass, one also derives a
relation between the radius, mass, and K, which, for given K, gives the mass-radius relation. The
appropriate numbers are listed in the table.

The central density and pressure

We can express the central density ρc in terms of the mean density ρ =M/ 4
3πR

3 using the relations
for the mass and radius. Solving K from the expressions for the mass and radius, one can also
find the ratio of the central pressure to GM2/R4. Values of ρc/ρ and Pc/(GM

2/R4) are listed in
Table 4.1.

The potential energy

Given the polytropic relation, one can also calculate the total potential energy. We just list the
result here:

Epot = − 3

5− n

GM2

R
. (4.6)

For next time

– Remind yourself of mean-free path and of basic radiation processes (example 9.2.1, pp 239–247).



Fig. 4.1. (top) Run of θ(ξ) as a func-
tion of ξ for n = 1.5 and n = 3 (i.e.,
γ = 5

3
and γ = 4

3
). Note that ξ ∝ r

and θn ∝ ρ. For non-degenerate stars,
T ∝ θ. (middle) Corresponding run
of ρ(r)/ρc as a function of r/R. The
black dots indicate the values appro-
priate for the Sun; see Table 4.2. (bot-
tom) Run of Mr/M as a function of
r/R. Note how much more centrally
condensed the n = 3 polytrope is
compared to the n = 1.5 one.

Table 4.2. The run of density of a polytropic model with n = 3 and γ = 4
3

ξ 0 1 2 3 4 5 6 6.9011

θ 1 0.855 0.583 0.359 0.209 0.111 0.044 0
r/R∗ 0 0.145 0.290 0.435 0.580 0.725 0.869 1
ρ/ρc 1 0.625 0.198 0.0463 0.00913 0.00137 0.0000858 0
(ρ/ρc)⊙ 1 0.67 0.19 0.037 0.0065 0.0011 0.00015 0



Fig. 4.2. Mass-radius relation for white dwarfs of various compositions. The dashed curves indicate
Chandrasekhar models for µe = 2 (upper) and 2.15 (lower), in which simple estimates like those discussed
in class are used, except that the mildly relativistic regime is treated correctly. The models deviate from
these idealized curves because the elements are not become completely ionized, and at very high densities,
inverse beta decay becomes important (the curve labelled ‘equ’ takes into account the resulting changes
in elemental abundances). For both reasons, there are variations in µe. The arrows indicate the effects of
adding a hydrogen atmosphere. The dotted curve is a mass-radius relation for neutron stars. Taken from
Hamada & Salpeter (1961, ApJ 134, 683).



5. Diffusive energy transport, Ionisation/excitation, Opacity

Textbook: §9.2, 8.1, and parts of 9.3, 10.4

Radiative and conductive energy transport

Radiative flux

Frad = −1

3

c

κρ

dUrad

dr
= −4ac

3

T 3

κρ

dT

dr
. (5.1)

Eddington equation

dT

dr
= − 3

4ac

κρ

T 3

Lr

4πr2
, (5.2)

where Lr = 4πr2Frad.

Rosseland mean

1

κ
=

1

κR
≡ π

acT 3

∫ ∞

0

1

κν

dBν

dT
dν , where Bν ≡ c

4π
U(ν) =

2hν3

c2
1

ehν/kT − 1
(5.3)

Since
∫

(dBν/dT )dν = acT 3/π, the Rosseland mean is the harmonic mean of κν weighted by
dBν/dT .

Conduction

Usually, conduction is irrelevant. The exception is degenerate cores, where it dominates, making the
cores isothermal. One can combine conduction with radiative transport by defining

F = Frad + Fcond = −(krad + kcond)∇T. (5.4)

If we define a conductive opacity κcond via

kcond ≡ 4ac

3

T 3

κcond
, (5.5)

and by redefining 1/κ = 1/κR+1/κcond, we can include conduction also in this way in the radiative
transport equation.

Excitation and Ionisation

In general, the different states of ions and atoms will be populated according to the Boltzmann
equation,

Nb

Na
=
gb
ga

e−(χb−χa)/kT . (5.6)

Here, ga,b are the statistical weights (e.g., g = 2n2 for level n in Hydrogen), and χa,b are the
excitation potentials.

Comparing the ground state of one ionisation stage with the ground state of the next one, one
has to take into account that the electron can have a range of kinetic energies and associated states.
One finds

dni+1,0(p)

ni,0
=
gi+1,0dge(p)

gi,0
e−(χi+pe/2me)/kT (5.7)



where dni+1,0(p) is the number density of atoms in the ground state of ionisation stage i + 1 with
an electron with momentum p, ni,0 the number density of atoms in the ground state of ionisation
stage i, and ge(p) the statistical weight of the electron at momentum p. The latter is given by

dge(p) =
2

h3
1

ne
4πp2 dp. (5.8)

Integrating over all possible electron momenta and summing over all possible excitation states n
(using the “partition function” Z =

∑

n gn exp(−χn/kT )), one finds the Saha equation,

ni+1

ni
ne =

Zi+1

Zi
2
(2πmekT )

3/2

h3
e−χi/kT . (5.9)

Opacity

In general, the opacity is a complicated function of density, temperature and abundances. Three
main processes dominate the continuum opacity at temperatures typically encountered in stars.

Electron scattering

σT =
8π

3

(

e2

mec2

)2

= 6.65 10−29m2 ⇒ κes = σT
1 +X

2mH
= 0.0200(1 +X)m2 kg−1. (5.10)

Free-free absorption

The free-free cross section for a certain ion i is given by

σff
ν,i =

(

2me

πkT

)1/2

ne
4π

3
√
3

Z2
i e

6

hcm2
eν

3
gffν . (5.11)

For a general mixture of ions, one has to add over all constituents and their corresponding Z2
i :

nionZ2 =
∑ ρXi

mHAi
Z2
i =

ρ

mH



X + Y +
∑

i≥3

Xi

Ai
Z2
i



 , (5.12)

where hydrogen and helium are assumed to be completely ionised.
In the integration over frequency required to calculate the Rosseland mean, one finds that the

dependence on ν leads to the introduction of a T−3 term. The result is the so-called Kramers
free-free opacity,

κff = 3.8 1021m2 kg−1 ρT−7/2gff(1 +X) (X + Y +B), (5.13)

where B is the sum in Eq. 5.12 and the Gaunt factor gff is a suitably averaged value of gffν .

Bound-free absorption

The semi-classical Kramers cross section for an ion with charge Zi with an electron in state n is
given by

σbf
ν,i,n =

64π4

3
√
3

mee
10

ch6
Z4
i

n5ν3
gbfν,i,n = 2.82 1025 cm2 Z4

i

n5ν3
gbfν,i,n. (5.14)



Most of the ions will be in an ionisation state i+1 which cannot be ionised by a typical photon with
hν ≃ kT ≪ χi+1; the relevant ions for the opacity are the somewhat rarer ions in ionisation state i.
Combining the Boltzmann and Saha equations, and writing ni,n explicitly in terms of ni+1,1,

ni,n = ni+1,1ne
n2

2

(

h2

2πmekT

)3/2

eχi,n/kT , (5.15)

where the hydrogenic approximation (gn = 2n2) was made.
For the Rosseland mean, one needs to add all states of all ions. For stellar interiors, hydrogen

and helium will be completely ionised, so the mean opacity will be proportional to the metallicity Z.
One finds the Kramers bound-free opacity,

κbf = 4.3 1024 cm2 g−1 gbf
t
Z(1 +X)ρT−7/2, (5.16)

where g is a mean Gaunt factor and t the “guillotine” factor that accounts for the number of different
ions being available.

Negative hydrogen ion

Hydrogen atom has a bound state for a second electron in the field of the proton, though it has a
very low ionisation potential, χH− = 0.75 eV. The number density of negative hydrogen ions will
be proportional to the electron density, which, in all but the most metal-poor stars, will be set by
ionisation of the metals (which have much lower ionisation potentials that hydrogen and helium).
Thus, the H− opacity will scale as κH− ∝ ρXZ at low temperatures; H− is of course easily ionized
at higher temperatures, and at it very low temperatures even metals will not be ionized, so there
will be no electrons to form H− by combining with H.

For next time

– Read ahead about convection (10.4)



Fig. 5.1. Opacities as a function of temperature. (left) Low-temperature regime, from Alexander & Ferguson
(1994, ApJ 437, 879). Opacities are shown for densities from 10−13 to 10−6 g cm−3 in factors of ten, with
lower densities corresponding to lower opacities. The sequence in line types is short-dashed, long-dashed,
solid, dotted. The bump on the left is due to dust, that in the middle mostly to water, and that on the
right to H−. (right) High-temperature regime, for densities from 10−9 to 102 g cm−3, from the opal group
(Iglesias & Rogers, 1996, ApJ 464, 943). The bump at the right is due to bound-free and free-free absorption,
and the lower level at the left to electron scattering. Note the difference in scale between the two panels.

Fig. 5.2. Opacities as a function of temperature as estimated with the Kramers formulae (short-dashed
lines) compared to those calculated by the opal group, for densities 10−6, 10−3, and 1 g cm−3. (left) Z = 0:
opal vs. the Kramers free-free opacity; (right) Z = 0.02: opal vs. the Kramers bound-free opacity.



6. Convection, Mixing Length Theory

Textbook: §10.4

General stability criterion

− 1

γ

1

P

dP

dr
> −1

ρ

dρ

dr
. (6.1)

Schwarzschild instability criterion

d lnT

d lnP

∣

∣

∣

∣

ad

<
d lnT

d lnP

∣

∣

∣

∣

rad

⇔ ∇ad < ∇rad. (6.2)

Ledoux instability criterion

γ − 1

γ
<

d lnT

d lnP
− (∂ ln ρ/∂ lnµ)

(−∂ ln ρ/∂ lnT )
d lnµ

d lnP
, ⇔ ∇ad < ∇rad −

(∂ ln ρ/∂ lnµ)

(−∂ ln ρ/∂ lnT )∇µ, (6.3)

where we have defined ∇µ = d lnµ/d lnP to be the changes in µ due to changes in composition Xi

only, and where for a fully-ionised ideal gas, the term with the partial derivatives equals unity.

Efficiency of convection

A general expression for the convective flux is

Fconv = ρvconv∆q = ρvconvcP∆T = ρvconvcPT
ℓmix

2HP
(∇−∇ad) , (6.4)

where ℓmix is the mixing length, usually parametrized as a fraction of the scale height, i.e., ℓmix ≡
αmixHP , with αmix the mixing length parameter.

To estimate vconv, we use a method different from that used in the textbook: balance buoyancy
(V g∆ρ = ρV g∆T/T ) and friction (−Aρv2); evaluate velocity at lmix/2; define V/A = βℓmix, where
β is a shape factor; and find

v2conv =
βg

HP

ℓ2mix

2
(∇−∇ad) . (6.5)

This leads to a convective flux given by

Fconv = ρcPTα
2
mix

√

βgHP

8
(∇−∇ad)

3/2 . (6.6)



7. Completely convective stars and the Hayashi line

Textbook: –

Generalities

For completely convective stars, the temperature gradient needs to be only very slightly superadi-
abatic for substantial luminosities to be transported. The implication is that whatever luminosity
the star manages to radiate away, will be brought to the surface without any problem by a corre-
sponding energy flux in the convective regions. Thus, the actual luminosity of the star is determined
in the only radiative region in the star, the photosphere.

A completely convective star

To find a solution for the whole star, we need to match a photosphere to the interior solution, where
the latter is given by a polytrope P = Kρ5/3. Matching the two solutions will set K, and for fixed K
one knows how the radius depends on mass. For the run of pressure in the atmosphere, we have

dP

dr
= −GM

R2
ρ or

dP

dh
= −gρ,

where h is the height above some reference level. For the photosphere, τ = κρh = 2
3 , or

h =
2

3κρ
⇒ Pphot =

2g

3κ
. (7.1)

Now, assume that the opacity is given by a law of the form

κ = κ0P
aT b, (7.2)

where in general a will be a positive number of order unity, while for cool temperatures b will be a
relatively large positive number. Given this general opacity law, one has

P 1+a
phot =

2

3κ0T b
eff

g ⇒ Pphot =

(

2

3κ0G

M

R2T b
eff

)1/(1+a)

. (7.3)

For the interior, we write the polytropic relation in terms of pressure and temperature, and
combine it with the mass-radius relation for polytropes of n = 1.5 (Table 4.1),

P = Kρ5/3

P =
ρ

µmH
kT







⇒ P = K

(

PµmH

kT

)5/3

K = C1.5GM
1/3R with C1.5 = 0.42422



















⇒ Pint =
M−1/2

(RC1.5G)
−3/2

(

kT

µmH

)5/2

. (7.4)

Equating Pint with Pphot, raising to the 2(1 + a) power, and sorting, one finds

(

2

3κ0

)2

G1+3aM3+aR−1+3a = C−3−3a
1.5

(

k

µmH

)5+5a

T 5+5a+2b. (7.5)

Solving for Teff ,

Teff = CRM
3+a

5+5a+2bR
−1+3a

5+5a+2b with CR =

[

(

2

3κ0

)2

G1+3aC3+3a
1.5

(

k

µmH

)−5−5a
]

1
5+5a+2b

. (7.6)



For a of order unity and large positive b one thus sees that Teff depends only very weakly on the
mass and radius. With L = 4πR2σT 4

eff , we can determine the dependencies on M and L, and thus
where the star would be in the HRD. One finds
(

2

3κ0

)2

G1+3aM3+a

(

L

4πσ

)(3a−1)/2

= C−3−3a
1.5

(

k

µmH

)5+5a

T 3+11a+2b, (7.7)

Teff = CLM
6+2a

6+22a+4bL
3a−1

6+22a+4b with CL =

[

(

2

3κ0

)2

G1+3aC3+3a
1.5

(

k

µmH

)−5−5a
]

2
6+22a+4b

. (7.8)

Again, for a of order unity and large b, Teff depends extremely weakly on the luminosity, and thus
one expects nearly vertical lines in the HRD. Given the slight positive dependence onM , one expects
the lines to move slightly towards higher temperatures for larger masses.

Complications

The scaling that one finds from the above relations is reasonable. If one were to calculate numerical
values, however, the answers would be very puzzling. The reason is that the assumption of a poly-
trope breaks down near the surface. Going towards the surface, it first fails in the ionisation zone,
where recombination is an additional source of heat. Due to the recombination, the temperature
of an adiabatically expanding blob does not decrease as it would otherwise, and therefore, above
the ionisation zone the temperatures will be higher than would be the case if recombination were
ignored. The effect can be seen Fig. 7.1.

Just below the photosphere, the convective energy transport becomes much less efficient, i.e.,
the superadiabatic gradient becomes substantial, while in the assumption of a n = 1.5 polytrope
it is assumed to be negligible. With less efficient energy transport, the temperature will decrease
more rapidly than adiabatic. Thus, the substantially superadiabatic region near the photosphere
counteracts the effects of the ionisation zone. Net, the ionisation zone is more important.

7.1. Contraction along the Hayashi track

The star needs to contract in order to provide the energy it radiates away. Since it is completely
convective, the entropy remains constant through the star, but decreases (increasing the entropy
of the universe in order not to violate the second law). Since dq = Tds, the energy generated per
gram is proportional to the local temperature. Therefore, the increase in luminosity in a shell dMr

is dLr ∝ TdMr. With this, and with P ∝ T 5/2, we can estimate whether the radiative gradient
decreases towards the surface or towards the centre of the star. We assume again an opacity law of
the form κ ∝ P aT b, with a = 1, b = −4.5 for a Kramers-type law. We find

d ln∇rad

d ln r
=

d lnLr

d ln r
− d lnMr

d ln r
+

d lnκ

d ln r
+

d lnP

d ln r
− 4

d lnT

d ln r

=
d lnLr

d ln r
− d lnMr

d ln r
+ [b− 4 + 2.5(a+ 1)]

d lnT

d ln r
. (7.9)

Generally, one has Mr =
∫

ρr2dr and Lr ∝
∫

Tρr2dr. With the polytropic relations, therefore,
Mr ∝

∫

θnξ2dξ and Lr ∝
∫

θn+1ξ2dξ. Thus, one can use the solution θ(ξ) for a polytropic star
to calculate d ln (Mr, Lr, T )/d ln r. The result for n = 1.5 is shown in Fig. 7.2. Also drawn is
d ln∇rad/d ln r, assuming a = 1 and b = −4.5. One sees that it is always larger than zero, i.e., the
radiative gradient decreases inwards. This is true for any reasonable opacity law. In consequence,
the interior is always the first part of the star to become radiative.

We can also estimate how the radiative gradient scales scales with the stellar parameters in
the core. There, the temperature hardly varies, and one has Lr ∝ (L/M)TcMr. Furthermore, for



any two stars with the same structure, Tc ∝ M/R and Pc ∝ M2/R4, with the same constants of
proportionality. Taking again κ ∝ P aT b, one finds for the radiative gradient in the core,

∇rad,c ∝
LrκP

MrT 4
∝ L

M
T 1+b−4P a+1 ∝ LM−2+b+2aR−1−b−4a ∝ LM−4.5R−0.5 (7.10)

where in the last proportionality we used a = 1, b = −4.5 (Kramers). From Eqs. 7.6, 7.8, one sees
that for given mass, L ∝ Rα, with α = (6 + 22a + 4b)/(5 + 5a + 2b), where a and b are now the
coefficients in the atmospheric opacity law. Generally, a ≃ 1 and b large, hence, α ≃ 2. Thus, the
radiative gradient decreases as one descends the Hayashi track. At constant luminosity, one has
R ∝ Mβ, with β = (6 + 2a)/(7 − a + 2b) <∼ 1. Hence, the radiative gradient is smaller for larger
masses, and more massive stars will become radiative in their core sooner.

For next time

– Think about why a star cannot be to the right of Hayashi limit.
– Read ahead on stellar energy sources (§10.3)



Fig. 7.1. Adiabatic gradient (top),

temperature (middle) and T/P 2/5

(bottom) as a function of pressure, cal-
culated using the opal equation of
state for a solar mixture. The effect
of the hydrogen and helium ionisation
zones is clearly seen in the depressions
in ∇ad and the changes in slope in the
other panels. As a result, a completely
convective star will have a higher sur-
face temperature than would be ex-
pected if the ionisation zone were ig-
nored. The effect is partly undone by
the superadiabatic gradient becom-
ing substantial just below the photo-
sphere.

Fig. 7.2. (Bottom) Run of mass (solid
line), luminosity (dotted line), and
temperature (dashed line) as a func-
tion of radius for a contracting poly-
trope with n = 1.5 (i.e., the local
energy generation per unit mass is
proportional to temperature). (Top)
Logarithmic derivatives of mass (solid
line), luminosity (dotted line), tem-
perature (short-dashed line), and ra-
diative gradient (long-dashed line) as
a function of radius. A Kramers-type
opacity law was assumed.



Fig. 7.3. Theoretical tracks for the pre-main sequence contraction phase for several different masses (as
indicated). Overdrawn are observed temperatures and luminosities for pre-main sequence stars in two star-
forming regions with rather different properties. In both, stars first appear along a very similar “birth line”
(indicated with the thick line).



8. Energy balance: Contraction/expansion and nuclear processes

Textbook: §10.3

Energy Balance

dLr

dr
= 4πr2ρ ǫ ⇔ dLr

dMr
= ǫ, (8.1)

where ǫ is the energy generated per unit mass. In general,

ǫ = ǫgrav + ǫnuc − ǫν , (8.2)

where ǫgrav is the energy liberated or lost by contraction or expansion, ǫnuc is the energy produced
(or lost) in nuclear processes, and ǫν is that part of the latter that escapes the star immediately in
the form of neutrinos.

Contraction or expansion

The energy gained or lost in mass movements inside the star can be derived from the first law of
thermodynamics, and written in various equivalent forms as

ǫgrav = −dQ

dt
= −T dS

dt
= −du

dt
− P

dV
dt
, (8.3)

where V ≡ 1/ρ and u is the energy density per unit mass.

Nuclear processes

The main source of energy in stars is nuclear fusion, which we will now treat in more detail than in
CO, § 10.3 (Kippenhahn & Weigert, chapter 18, was used extensively below).

Basic considerations

The energy gained or lost in nuclear processes is related to the mass defect ∆m:

E = ∆mc2 =





∑

i

minit,i −
∑

j

mfinal,j



 c2. (8.4)

The mass defect reflects the different binding energies per nucleon in different nuclei,

Ebind

A
=

1

A
(Zmp + (A− Z)mn −mnucleus) c

2 . (8.5)

The binding energy per nucleon increases steeply from hydrogen, then flattens out and starts to
decrease, having reached a maximum at 56Fe; see Fig. 8.1. Defining hydrogen to have zero binding
energy, helium has 7.07MeV per nucleon, carbon 7.68MeV, and iron 8.73MeV.

For fusion, nuclei must be brought close enough together that the short-range strong nuclear
force can dominate over the weaker, but long-range repulsive Coulomb force. The range of the strong
nuclear force is set by the Compton wavelength of its carrier, the pi meson, h̄/mπc = 1.41 fm.
The repulsive Coulomb potential at a distance of ∼ 1 fm (10−13 cm) is ECoul = Z1Z2e

2/r ≃
1.44MeV

(

1 fm
r

)

Z1Z2 , where Z1 and Z2 are the atomic numbers of the colliding nuclei. This should
be compared with typical kinetic energy of a particle, of order kT = 0.86T7 keV, where T7 is the



temperature in units of 107K. Thus, classically, in the centre of the Sun (where T7 ≈ 1.5), parti-
cles trying to interact should be turned around by the Coulomb force at ∼ 103 fm; as a result, no
reactions would be expected.

From quantum mechanics, however, a particle has a certain finite probability of “tunneling”
through the Coulomb barrier (see CO, p. 147–148, which is perhaps more insightful than the moti-
vation on p. 335-338). The reaction cross section per nucleus is usually written as,

σ(E) =
S(E)

E
e−b/

√
E with b =

1

h
2π2

√
2m′Z1Z2e

2 and m′ =
m1m2

m1 +m2
. (8.6)

Here, the term 1/E reflect the effective area for the interaction (for which one can take πλ2 ∝
1/p2 ∝ 1/E), and the exponential term the penetration probability; effects from the nuclear force
are absorbed into a function S(E) which is, under most conditions, a relatively slowly varying
function of the interaction energy E (but see “resonances” below).

The fusion product is at first a compound nucleus in an excited state with positive total energy.
Often, this compound nucleus will decay into the same particles that formed it – i.e., the incoming
particle is just scattered by the collision. The cases in which the decay products are different define
the net reaction rate, the details of which are hidden in S(E). The rates S(E) can be calculated
(with great difficulty!), or one can extrapolate from measurements (which are typically done at far
larger energies than those relevant to stellar conditions).

In general, the compound nucleus has several discrete bound states at negative energies in the
nuclear potential well, the stable ground state of the nucleus and some excited states that can
decay into lower-energy states by emission of photons (γ-rays). These states are similar to the
bound states of electrons in an atom, but comprising nucleons instead of electrons. However, the
compound nucleus may also have quasi-stable excited states of positive energy (below the top of
the Coulomb barrier), which can decay by emission of particles (by quantum tunnelling outwards
through the Coulomb barrier) as well as by emission of a photon. Incoming particles with “resonant”
energy corresponding to such a quasi-stable state can form a compound nucleus much more easily,
leading to a greatly enhanced reaction rate.

Given the cross section σ(E), the reaction rate between particles of types a and b (at a given
energy E) is given by

ra,b(E) dE = nanbvσ(E)f(E) dE , (8.7)

where na and nb are the number densities of a and b, v is the relative velocity between a and b
(corresponding to energy E), f(E) is the energy probability distribution, and σ(E) is the cross
section defined above. The factor v accounts for the fact that for larger velocities v, more particles
pass each other per unit time. Note that if particles a and b are identical, we need to multiply the
above by 1

2 in order to avoid counting double. Including that in the integrated reaction rate, we find
a rate

ra,b =
1

1 + δa,b
nanb 〈σv〉 , where 〈σv〉 ≡

∫ ∞

0

v(E)σ(E)f(E) dE (8.8)

is the average reaction rate per pair of particles, i.e., 〈σv〉 is an effective cross-section.
If the velocity probability distributions are Maxwellian for both particles (i.e., particles have

momenta as in Eq. 3.8, divided by n), the distribution of the relative velocity of the particles is
also Maxwellian, but with m = m′ = mamb/(ma +mb) [verify this]. We can rewrite the Maxwell

distribution in Eq. 3.8 as a function of energy using p =
√
2mE and dp = 1

2

√

2m/E dE,

f(E) dE =
2π

√
E

(πkT )3/2
e−E/kT dE . (8.9)



Hence, for the effective cross section (using v(E) = p/m =
√

2E/m ),

〈σv〉 =
(

8

m′π

)1/2 (
1

kT

)3/2 ∫ ∞

0

S(E)e−E/kT e−b/
√
E dE . (8.10)

The integrand will be small everywhere but near where the two exponentials cross, which is called
the “Gamow peak”; see Fig. 8.2. Assuming S(E) is a slowly varying function, the maximum of the

integrand will be where the term h(E) ≡ −E/kT − b/
√
E in the exponential reaches a maximum;

this position E0 is thus obtained via:

dh(E)

dE
=

d

dE
(−E/kT − b/

√
E) = 0 ⇒

E0 =

(

bkT

2

)2/3

= 5.665 keV (Z1Z2)
2/3

(

m′

mu

)1/3

T
2/3
7 , (8.11)

where mu is the atomic unit mass. Using a Taylor expansion of h(E) around its maximum,

h(E) = h0 + h′0(E − E0) +
1

2
h′′0 (E − E0)

2 + . . . ≃ −τ − 1

4
τ

(

E

E0
− 1

)2

+ . . . , (8.12)

where we have used the fact that the first derivative h′0 must be zero (since we are expanding around
the maximum), and where we have defined

τ =
3E0

kT
= 19.721 (Z1Z2)

2/3

(

m′

mu

)1/3

T
−1/3
7 . (8.13)

Using this in the integral, the exponential is approximately a Gaussian, as one can see by substituting
ξ = (E/E0 − 1)

√
τ/2,

∫ ∞

0

eh(E) dE =

∫ ∞

0

e−τ− 1
4
τ(E/E0−1)2 dE =

2

3
kT τ1/2e−τ

∫ ∞

−
√
τ/2

e−ξ2 dξ . (8.14)

Since τ is relatively large and the main contribution to the integral comes from the range close to
E0 (i.e., ξ = 0), the error introduced by extending the integration to −∞ is small, i.e., the integral
is approximately

√
π. For the Gaussian, the fractional full width at half maximum ∆E/E0 is

∆E

E0
= 4

(

ln 2

τ

)1/2

= 0.750 (Z1Z2)
−1/3

(

m′

mu

)−1/6

T
1/6
7 . (8.15)

Doing the integration using the Gaussian and inserting the result in Eq. 8.10 (after taking out the
slowly varying S(E)), one obtains

〈σv〉 = 4

3

(

2

m′

)1/2 (
1

kT

)1/2

S0τ
1/2e−τ , (8.16)

where S0 = S(E0). Since T ∝ τ−3 (Eq. 8.13), one thus has that 〈σv〉 ∝ τ2e−τ . It is the exponential,
however, that really determines the reaction speeds. The dependences on Z1, Z2, and m′ ensure
that more massive, more highly charged ions hardly react at all as long as the fusion processes of
the lighter elements still are taking place.

It is often useful to know the temperature dependence of the reaction rate, given by

ν ≡ ∂ ln 〈σν〉
∂ lnT

=
1

3
(τ − 2) = 6.574 (Z1Z2)

2/3

(

m′

mu

)1/3

T
−1/3
7 − 2

3
(8.17)

(note that, for a given reaction, ν usually becomes smaller with increasing temperature). For the
fusion of two protons in the centre of the Sun, Z1 = Z2 = 1, m′ = 1

2 , T7 ≃ 1.5, hence ν ≃ 4, which
is a relatively mild temperature dependence. For other fusion processes, we will find exponents of
ν ∼ 20 and above, making these processes among the most strongly varying functions in physics.



Corrections to the above rate formulae

A few corrections are usually made in more detailed derivations. The first is a small correction factor
ga,b to account for any temperature dependence of S0 and for the inaccuracy of approximating the
Gamow peak by a Gaussian. The second is more physical, and is a correction fa,b for the effect
of electron screening — due to the presence of electrons, the effective potential that two ions see
is slightly reduced (“screened”); as a result, the reaction will be faster. This correction is more
important at higher densities, and at very high densities burning starts to depend more sensitively
on the density than on the temperature. (For this case, one speaks of pycnonuclear reactions.) Also,
separate terms may be added to account for resonances.

Timescales

For a reaction of particles a and b, the number densities decrease with time. We define a timescale
for each type of particle

τa ≡ − na

dna/dt
=

na

(1 + δa,b)ra,b
=

1

nb 〈σv〉a,b
. (8.18)

With this definition, na ∝ e−t/τa . Note that when two particles of the same type react (i.e., when
b = a), the rate as defined in Eq. 8.7 above is a factor two smaller, but two particles of type a are
destroyed per reaction, so the final expression for the timescale does not contain the factor 1+ δa,b.
[Show that when there are multiple reactions, the timescale is given by τ−1

a =
∑

b(1/τa,b).]

Hydrogen burning

In principle, many nuclear reactions can occur at the same time. As we saw above, however, the
weighting of the exponential with (Z1Z2)

2/3 strongly inhibits processes involving more massive,
more highly charged particles. In combination with the initial abundances of stars, with the largest
fraction of the mass being hydrogen, generally only a small number of fusion processes turn out to
be relevant in a given evolutionary stage.

P-P chain

In less massive stars (M <∼ 1.2 M⊙), the fusion of hydrogen to helium on the main sequence is
mostly by the proton-proton chain (p-p chain). The possible variants of the p-p chain are:

1H+ 1H → 2D+ e+ + ν

2D+ 1H → 3He + γ

3He + 3He → 4He + 2 1H

✘✘✘✘✘✘✾
❳❳❳❳❳❳③
or 3He + 4He → 7Be + γ

pp1

7Be + e− → 7Li + ν

✘✘✘✘✘✘✾ ❆❆❯
or 7Be + 1H → 8B + γ

7Li + 1H → 4He + 4He 8B → 8Be + e+ + ν

pp2 8Be → 4He + 4He

pp3

In these chains, the positrons made will meet an electron and annihilate, adding 1.022MeV of
photon energy. Note that while the total energy released (per 4He produced) for the three chains



is equal, the fraction of that energy put in neutrinos is not the same. The net energy put into the
local medium per 4He nucleus produced is 26.20MeV for pp1, 25.67 for pp2, and 19.20 for pp3.

The relative frequency of the branches depends on the temperature, density, and chemical compo-
sition. Since the reduced mass is slightly larger for the 3He+4He reaction than it is for the 3He+3He
reaction, it will have a slightly larger temperature sensitivity. With increasing temperature, pp2 and
pp3 will therefore start to dominate over pp1 if 4He is present in appreciable amounts. Similarly,
with increasing temperature, the importance of proton capture on 7Be will start to dominate over
the electron capture.

For low temperatures, say T7 <∼ 0.8, one has to calculate all the reactions independently and
keep track of relative abundances. For higher temperatures, the intermediate reactions will be in
equilibrium, and the energy generation can be taken to be proportional to the first step, which is
the slowest. This is because it involves the weak nuclear force in the decay of a proton to a neutron
during the short time the two protons are together. Indeed, in by far most cases, the compound
two-proton nucleus that is formed at first, will simply break apart into two protons again. As a
result, the effective cross-section is very small, ∼10−47 cm2. For the energy, one finds

ǫpp = 2.54 106 erg s−1 g−1 ψf1,1 g1,1X
2
1 ρ T

−2/3
6 e−33.81/T

1/3
6 , (8.19)

with an uncertainty of about 5%. Here, g1,1 ≃ 1 + 0.00382T6, f1,1 ≃ 1 for electron screening, and
ψ corrects for the relative contributions of the different chains. At T7 <∼ 1, ψ ≃ 1, but at T7 = 2, it
varies between 1.4 for Y = 0.3 to nearly 2 for Y = 0.9. At still higher temperatures, when pp3 starts
to dominate, it goes to 1.5 almost independent of Y . The temperature dependence of the reaction,
as calculated from Eq. 8.17, is relatively mild: ν ≃ 4 (i.e., ǫpp ∝ T 4, much less steep than we will
find below for other reactions).

CNO cycle

At sufficiently high temperatures, hydrogen can be burned to helium via the CNO cycle, in which
carbon, nitrogen, and oxygen act more or less as catalysts (these have to be present, of course). The
reactions are split in a main cycle (CN cycle) and a secondary cycle (ON cycle), as follows:

M1. 12C+ 1H → 13N+ γ

M2. 13N → 13C+ e+ + ν

M3. 13C+ 1H → 14N+ γ

M4. 14N+ 1H → 15O+ γ

M5. 15O → 15N+ e+ + ν

M6. 15N+ 1H →
{

12C + 4He and back to line M1 (main CN cycle).

16O+ γ (secondary ON cycle):

S1. 16O+ 1H → 17F + γ

S2. 17F → 17O+ e+ + ν

S3. 17O+ 1H →
{

14N+ 4He and back to line M4.

18F + γ

S4. 18F → 18O+ e+ + ν

S5. 18O+ 1H → 15N+ 4He and back to line M6.

The branch to the ON cycle (at line M6) is roughly 10−3 to 10−4 times less likely than the main
branch back to the beginning of the CN cycle. The ON cycle is important, however, since it results



in oxygen being converted to nitrogen (which takes part in the CN cycle) — the branching inside
the ON cycle (at line S3) does not strongly favor one branch over the other, but both branches lead
to the CN cycle. The beta-decay times are of order 102 . . . 103 seconds, much shorter than typical
nuclear reaction timescales.

Again, for high enough temperatures the reaction cycle will reach equilibrium, and the reaction
rate will be set by the slowest link in the CN cycle, which is the proton-capture on 14N. Because
of this bottleneck in the CN cycle, and due to the small branching ratio into the ON cycle, most of
the CNO originally present will be turned into 14N. The energy gain of the whole cycle, after taking
out neutrino losses, is 24.97MeV, and one finds

ǫCNO = 7.48 1027 erg s−1 g−1 g14,1 f14,1XCNOX1 ρ T
−2/3
6 e−152.31/T

1/3
6

−(T6/800.)
2

(8.20)

(with an uncertainty of ±10%), where g14,1 ≃ 1 − 0.002T6, f14,1 ∼ 1 for electron screening, and
XCNO = XC + XN + XO. At somewhat lower temperatures, the CN cycle can reach equilibrium,
but the burning of 16O proceeds slowly; Eq. 8.20 is still quite a good approximation, but with
XCNO = XC +XN + |∆XO→N(t)|, where |∆XO→N(t)| is the amount of 16O that has been burned
to nitrogen as of time t (note that the intermediate 17O stage may also slow down the conversion
of 16O to nitrogen, since the reaction rates of 16O and 17O may be comparable).

Inside stars that burn predominantly via the CNO cycle, the nitrogen abundance will be far larger
than it normally is, while carbon and oxygen will be correspondingly underabundant. Indeed, such
abundance patterns are observed in massive stars which have lost a lot of mass, so that processed
material reaches the surface. Examples of these are the ON stars and Wolf-Rayet stars of type WN.
(In carbon-rich Wolf-Rayet stars, one even sees the products of helium fusion.) Also, in lower-mass
red giants, some CNO-processed material is mixed to the surface.

For the CNO cycle, the temperature sensitivity is high, ν = 23 . . .13 for T6 = 10 . . . 50. As a
result, the p-p chain dominates at low temperatures, and the CNO cycle at high temperatures, as
is illustrated in Fig. 8.3. Furthermore, because of the steep temperature dependence, the energy
production will be highly concentrated towards the centre. Therefore, Lr/r

2 will be large, and thus
∇rad will be large as well. This is why massive stars have convective cores.

Helium burning

When all the hydrogen has been fused into helium, it is difficult to continue, because until one reaches
carbon, the elements following helium have lower binding energy per nucleon (see Fig. 8.1). As a
result, the fusion of two helium nuclei leads to a 8Be nucleus whose ground state is nearly 100keV
lower in energy; therefore, it decays back into two alpha particles in a few 10−16 s. Nevertheless, this
is still about 105 times longer than the encounter time — in fact, a 8Be abundance of about 10−9

builds up in stellar matter. Occasionally, it will happen that another alpha particle comes by so
that a carbon nucleus can be formed. This whole process is called the triple-alpha reaction because
it almost is a three-body interaction. Writing out the reactions,

4He + 4He ⇀↽ 8Be

8Be + 4He → 12C + γ

The total energy released per carbon nucleus formed is 7.274MeV. For these reactions, it is much
less straightforward to derive an energy generation rate, because “resonances” (as described above)
are important for both the above steps. Roughly, the energy generation rate is

ǫ3α = 4.99 1011 erg s−1 g−1 f3α Y
3 ρ2 T−3

8

(

1 + 0.00354T−0.65
8

)

e−43.92/T8 (8.21)

(with an uncertainty of ±14%), where f3α = f4,4f8,4 is the combined electron screening factor. For
this reaction, the temperature sensitivity is very high, ν = 40 . . . 19 for T8 = 1 . . . 2.



Other fusion processes can occur simultaneously (energy gain in MeV is shown to the right):

12C+ 4He → 16O+ γ 7.162

16O+ 4He → 20Ne + γ 4.730

14N+ 4He → 18F + γ , 18F → 18O+ e+ + ν 5.635 (total, excluding neutrino energy)

18O+ 4He → 22Ne + γ 9.667

The second of these is slow, and for the last two 14N is not very abundant (and thus its product
18O is not very abundant either). The first reaction is therefore the most important one. It is rather
complicated (and has an uncertainty of ±40%); approximately,

ǫ12,α ≃ 9.58 1026 erg s−1 g−1 f12,4X12 Y ρT
−2
8

[

(

1 + 0.254T8 + 0.00104T 2
8 − 0.000226T 3

8

)

e−(T8/46.)
2

+
(

0.985 + 0.9091T8 − 0.1349T 2
8 + 0.00729T 3

8

)

e−(T8/13.)
2
]

e−71.361/T
1/3
8 . (8.22)

Carbon burning and onward

After helium has been exhausted, the next processes to start are those of carbon burning, at tem-
peratures of order T9 = 0.5 . . .1. The situation is very complicated, since the excited 24Mg nucleus
that is produced is unstable and can decay in a number of different ways:

12C+ 12C → 24Mg+ γ 13.931

→ 23Mg+ n −2.605

→ 23Na + p 2.238

→ 20Ne + α 4.616

→ 16O+ 2α −0.114

The last column lists the energy gain in MeV. Here, the most probable reactions are those leaving
23Na and 20Ne. The next complication that arises, is that the proton and alpha particle produced
in these two reactions immediately fuse with other particles (since for them, the temperatures are
extremely high). As a result of these complications, the energy rate is rather uncertain. For some
approximate values, see Kippenhahn & Weigert, p. 167.

For temperatures above 109K, the photon energies become so large that they can lead to the
break-up of not-so-tightly bound nuclei. Reaction rates analogous to the Saha equation for ionization
can be written to determine equilibrium conditions. Generally, however, equilibrium will not be
reached as time is most definitely running out if a star reaches these stages. A reaction which
is important subsequent to Carbon burning is 20Ne + γ → 16O + α (the reverse of the helium
burning reaction). The alpha particles resulting from this photo-disintegration are captured faster
by Neon (via 20Ne + α → 24Mg + γ) than by the Oxygen nuclei, and hence the net reaction is
2 20Ne + γ → 16O+ 24Mg+ γ, with an energy gain of 4.583MeV. This is called Neon burning.

The next phase is oxygen burning, for which temperatures in excess of 109K are required. As
for carbon burning, the reaction can proceed via a number of channels:

16O+ 16O → 32S + γ 16.541

→ 31S + n 1.453

→ 31P + p 7.677

→ 28Si + α 9.593

→ 24Mg+ 2α −0.393



For these reactions, the most frequent product is 31P; next most frequent is 28Si. Again, the small
particles immediately lead to a multitude of other reactions. Among the end products will be a large
amount of 28Si.

At the end of Oxygen burning, photo-disintegration becomes more and more important. In
particular, photo-disintegration of 28Si leads to the ejection of protons, neutrons and alpha particles,
which fuse with other 28Si particles to form bigger nuclei that in turn are subjected to photo-
disintegration. Still, gradually larger nuclei are built up, up to 56Fe. Since iron is so strongly bound,
it may survive as the dominant species. The whole process is called silicon burning.

For next time

– Think about what happens when the core has turned into Iron.
– Read ahead about stellar models: textbook §10.5 and Appendix H.



Fig. 8.1. Binding energy per nucleon for the different elements. In the right-hand panel an enlargement
of the plot is shown and the elements are labeled. From Verbunt (2000, first-year lecture notes, Utrecht
University).

Fig. 8.2. Gamow peak resulting from
the competing exponential terms:
(1) from the Maxwellian (short-
dashed line: ∝ exp(−E/kT ), with
kT = 0.2E0 here), and (2) from
the penetration probability (long-

dashed line: ∝ exp(−b/
√
E), with b =

10
√
E0 here). The solid line indicates

the product, and the dotted line the
approximating Gaussian discussed in
the text. Upper panel: logarithmic
scale; lower panel: linear scale.



Fig. 8.3. Energy generation rates for
matter with ρ = 10 g cm−3, X1 = 0.7,
XCNO = 0.01, and a range of temper-
atures. The contributions from the p-
p chain (short-dashed) and CNO cycle
(long-dashed) are also indicated sepa-
rately.



9. Stellar Models

Textbook: §10.5, App. H

The problem

To calculate a star’s structure, we need to solve the equations of hydrostatic equilibrium, mass
continuity, energy balance, and energy transport. It makes most sense to write these in terms of
fractional massMr rather than fractional radius r (since composition profiles are determined by the
position in terms of Mr, which, unlike r, does not change when the star expands or contracts). The
mass continuity equation (Eq. 1.3) can be used to put the equations into the following form:

[mass continuity (Eq. 1.3)]:
dr

dMr
=

1

4πr2ρ
, (9.1)

[hydrostatic equilibrium (Eq. 1.2)]:
dP

dMr
= −GMr

4πr4
, (9.2)

[energy balance (Eq. 8.1)]:
dLr

dMr
= ǫnuc − ǫν + ǫgrav , (9.3)

[generalized Eddington equation]:
dT

dMr
= −GMrT

4πr4P
∇∗ . (9.4)

In Eq. 9.4, depending on whether the layer is radiative or convective, one has

∇∗ =







∇rad =
3

16πacG

κLrP

MrT 4
(radiative layers) ,

∇ad +∇sa (convective layers) .
(9.5)

Here, ∇sa is the super-adiabatic part of the gradient (i.e., ∇sa ≡ ∇conv −∇ad); ∇sa can be neglected
in the interior (where ∇conv ≃ ∇ad) but not near the surface (where ∇conv > ∇ad). The condition
for convection can either be the Ledoux or the Schwarzschild criterion.

Evolution consists of thermal adjustments (via ǫgrav) and changes in the abundances, due to the
fusion reactions that proceed with rates ra,b (Eq. 8.8 — note that 〈σv〉 is a function of T ):

dXi

dt
=
mi

ρ





∑

j,k

rj,k(→i) −
∑

k′

(1 + δi,k′ ) ri,k′



 , i = 1, . . . , I , (9.6)

where i labels all isotopes being considered, rj,k(→i) are reactions that produce isotope i (from j
and k), and ri,k′ are reactions that destroy i (and also k′). One of the relations can be replaced by
the normalization condition,

∑

iXi = 1 (or this condition can be used to check that you have coded
the nuclear reactions correctly!). Furthermore, the abundances should be mixed in convective (and
semi-convective) zones, taking account of possible overshooting.

In the above equations, we assume that the equation of state, the opacity, and the nuclear
reactions are known functions of composition, temperature, and either density or pressure – these
are equivalent, as the usual expression of the equation of state P = P (ρ, T,Xi) can be inverted and
expressed as ρ = ρ(P, T,Xi) instead. In other words, as functions of (ρ, T,Xi) or (P, T,Xi), we have:

Equation of state: { P (ρ, T,Xi) or ρ(P, T,Xi) }, ∇ad, s, CV , CP ,
(

∂ lnP
∂ lnT

)

ρ
,
(

∂ lnP
∂ ln ρ

)

T

Opacity (incl. conduction): κ

Nuclear reaction rates: rj,k, ǫnuc, ǫν



[Note that equation-of-state quantities s, CV , CP ,
(

∂ lnP
∂ lnT

)

ρ
, and

(

∂ lnP
∂ ln ρ

)

T
enter into ǫgrav and the

formulae that can be used to obtain ∇conv in regions where ∇sa is not negligible.] With the above
given, there are as many differential equations as unknowns.

While the equations can be expressed equally well in terms of (ρ, T,Xi), for simplicity, we will
assume hereafter that the above are expressed as functions of (P, T,Xi). The unknowns are then
(P, r, Lr, T,X1, . . . , XI), whose dependence as a function of Mr and t is to be determined. For
this purpose, we need boundary conditions at Mr = 0 and Mr = M and initial values for the
composition Xi and gravitational energy (e.g., an entropy profile).

Boundary conditions

The inner boundary condition is simple: r = 0, Lr = 0 for Mr = 0. Unfortunately, we cannot put
any a priori constraints on Pc and Tc, so that integrating from the centre outwards we have families
of two-parameter solutions r(Pc, Tc) and Lr(Pc, Tc). For small Mr, we can write these functions as
expansions in Mr,

r(Pc, Tc) =

(

3

4πρc

)1/3

M1/3
r , (9.7)

Lr(Pc, Tc) = (ǫnuc,c − ǫν,c + ǫgrav,c)Mr , (9.8)

where ρc and the various ǫc are known functions of (Pc, Tc). These expansions are often more useful
than the Mr = 0 conditions, since Eqs. 9.1, 9.2, and 9.4 become indeterminate at Mr = 0.

At the surface, we will have conditions for P and T , but R and L are unknown a priori, leading
to a situation similar to that in the centre: for given M , R, and L, one can calculate log g and
Teff , which determine the run of pressure and temperature in the atmosphere. Thus, integrating
from the surface downwards we have families of two-parameter solutions P (R,L) and T (R,L).
Unfortunately, the surface condition is not simple. One could use P = 0, T = 0 forMr =M , but for
convective envelopes this leads to gross errors. Somewhat more elegant is to use the photosphere,
where Teff = (L/4πR2σ)1/4 and Pphot = 2g/3κ. The condition for the pressure is derived from
requiring τ = 2

3 at the photosphere, as was done in the discussion of the Hayashi line (Eq. 7.1); for
κ, a suitably chosen average of the opacity above the photosphere has to be used in order to get an
accurate value for Pphot (see Fig. 9.1).

The main problem with these simple boundary conditions is that near the surface the assump-
tions underlying the energy transport equation break down: the photon mean-free path becomes
substantial. In these regions, much more detailed radiative transfer calculations are required. One
can use a simple “grey atmosphere” approximation (in which one assumes that the opacity κν is
equal to the Rosseland value, independent of wavelength) to perform an approximate integral over
the atmosphere. An alternate solution to this problem is to leave it to those interested in detailed
stellar atmospheres, and use a grid of their results. For given (R,L), one calculates Teff and log g,
and uses this to to interpolate in the (R,L,M) grid of model atmosphere results to find P∗, T∗ at
the bottom of the atmosphere.

Computational methods

There are several ways one could attempt to calculate stellar models and evolution numerically.
First consider the case where Xi(Mr) and ǫgrav(Mr) are known, i.e., where we have to solve just the
structure of the star.

In principle, one could simply start integrating from both sides for trial values of (Pc, Tc) and
(R,L), and try to match the two solutions at some intermediate fitting point, by varying the trial
values. This is called the shooting method. In general, given a good scheme, the solution converges
quickly (the program statstar in CO, App. H, is a simple example; see Numerical Recipes,
§ 17.2 for more details). It is not very efficient, however, if one wants to calculate the evolution,



in which the star evolves through a series of spatial models which are very similar. For this case,
it is better to use a method which uses the spatial model from a previous step as an initial guess
and makes small adjustments in order to find the new equilibrium. Most commonly used for this
purpose is the Henyey method, which is especially well-suited for solving differential equations with
boundary conditions on both sides.

The method works as follows. Take a grid of points M
(j)
r , with j = 1, . . . , N . Then, discretise the

differential equations, bring both sides to the left-hand side, and call these A
(j)
i . Then, a solution

will be given by

A
(j)
i =

y
(j+1)
i − y

(j)
i

M
(j+1)
r −M

(j)
r

− fi(M
(j+ 1

2
)

r , y
(j+ 1

2
)

1 , y
(j+ 1

2
)

2 , y
(j+ 1

2
)

3 , y
(j+ 1

2
)

4 ) = 0 ,

i = 1, . . . , 4 , j = 1, . . . , N − 1 (9.9)

where y1, . . . , y4 are the four variables of interest (e.g., y1 = r, y2 = P , y3 = Lr, y4 = T ), the index
i numbers the four equations, and f1, . . . , f4 are the right–hand side functions in the differential
equations. The superscript j + 1

2 is meant to indicate that a suitable average of the values at grid
points j and j + 1 is taken (e.g., just a straight mean).

At the inner and outer boundaries, we have

B
(in)
1 = r(1) − r(Pc, Tc) = y

(1)
1 − f

(in)
1 (y

(1)
2 , y

(1)
4 ) = 0 ,

B
(in)
3 = L

(1)
r − Lr(Pc, Tc) = y

(1)
3 − f

(in)
3 (y

(1)
2 , y

(1)
4 ) = 0 ,

B
(out)
2 = P (N) − P (R,L) = y

(N)
2 − f

(out)
2 (y

(N)
1 , y

(N)
3 ) = 0 ,

B
(out)
4 = T (N) − T (R,L) = y

(N)
4 − f

(out)
4 (y

(N)
2 , y

(N)
4 ) = 0 ,

(9.10)

where we assumed one could determine (Pc, Tc) from the values at the first grid point and (R,L)

from those at the last. Note that for the simple case for which M
(1)
r = 0, the functions r(P, T ) and

Lr(P, T ) are identical to zero. If one choses to work in logarithmic units for {ρ, P, r, T }, however,
the first point cannot be at Mr = 0, and therefore the inner boundary conditions are written in
their more general form above. Thus, with the above definitions of A,B, a solution for the problem

requires A
(j)
i = 0, Bi = 0.

Considering the whole grid, we have 4N unknowns y
(j)
i and 4(N − 1) + 2 + 2 = 4N equations.

Now suppose that we have a first approximation y
(j)
i (1) to the solution. For this initial guess, the

constraints will not be met, i.e., A
(j)
i (1) 6= 0, Bi(1) 6= 0, and we need to find corrections δy

(j)
i such

that a second approximation y
(j)
i (2) = y

(j)
i (1) + δy

(j)
i does give a solution, i.e., we are looking for

changes δy
(j)
i that imply changes δA

(j)
i , δBi, such that A

(j)
i (1) + δA

(j)
i = 0, Bi(1) + δBi = 0, or

δB
(in)
i = −B(in)

i (1) , i = 1, 3

δA
(j)
i = −A(j)

i (1) , i = 1, . . . , 4 , j = 1, . . . , N − 1

δB
(out)
i = −B(out)

i (1) , i = 2, 4 .

(9.11)



For small enough corrections, we can expand the A and B linearly in δy
(j)
i , and write

4
∑

k=1

∂B
(in)
i

∂y
(1)
k

δy
(1)
k = −B(in)

i , i = 1, 3

4
∑

k=1

∂A
(j)
i

∂y
(j)
k

δy
(j)
k +

4
∑

k=1

∂A
(j)
i

∂y
(j+1)
k

δy
(j+1)
k = −A(j)

i , i = 1, . . . , 4 , j = 1, . . . , N − 1

4
∑

k=1

∂B
(out)
i

∂y
(N)
k

δy
(N)
k = −B(out)

i , i = 2, 4

(9.12)

[we have dropped the (1) numbering the 1st approximation]. This system has 2+4(N − 1)+2 = 4N

equations which need to be solved for the 4N unknown corrections δy
(j)
i . In matrix form,

H



















δy
(1)
1
...

δy
(j)
i
...

δy
(N)
4



















= −



















B
(in)
1
...

A
(j)
i
...

B
(out)
4



















, (9.13)

where H is called the Henyey matrix. Generally, this matrix equation can be solved (detH 6= 0),
but since we used a first-order expansion, the next approximation y + δy will still not fulfill the
conditions accurately. Thus, one iterates, until a certain pre-set convergence criterion is met.

Note that Henyey matrix has a relatively simple form, as can be seen by writing out which
elements are actually used for the case N = 3,



















































• • • •
• • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •

• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •

• • • •
• • • •







































































































δy
(1)
1

δy
(1)
2

δy
(1)
3

δy
(1)
4

δy
(2)
1

δy
(2)
2

δy
(2)
3

δy
(2)
4

δy
(3)
1

δy
(3)
2

δy
(3)
3

δy
(3)
4





















































= −





















































B
(in)
1

B
(in)
3

A
(1)
1

A
(1)
2

A
(1)
3

A
(1)
4

A
(2)
1

A
(2)
2

A
(2)
3

A
(2)
4

B
(out)
2

B
(out)
4





















































.

Here, the bullets indicate the elements that are used; all others are zero. Because of the simple
structure, the solution can be found in a relative straightforward manner. See Numerical Recipes,
§ 17.3, for details, and for a method that is fast and minimizes storage.



Evolution

So far, we have ignored the chemical evolution and assumed that ǫgrav was a known function. The
latter function can be estimated easily once we have made an initial model and want to compute a
model one time step later, by approximating

ǫ
(j+ 1

2
)

grav = −T (j+ 1
2
) d

dt
s(j+

1
2
) = −T

(j+ 1
2
)

∆t

(

s(j+
1
2
) − s

(j+ 1
2
)

prev

)

, (9.14)

Here, we expressed ǫgrav in terms of the entropy change, but the other expressions in Eq. 8.3 can
be used in the same way. The point to note is that sprev, which is the entropy that the element had
in the previous model, is known. Since the current entropy is a known function s(P, T,Xi) (from
the equation of state), also ds/dt is a known function of (P, T,Xi). Thus, ǫgrav is a known function
of (P, T,Xi) and can be used without problems in deriving the stellar structure. [A complication
arises in convective regions, especially ones that are advancing into regions of different chemical
composition. Mixing at constant pressure has no energy cost, but since it is an irreversible process,
it results in an increase of entropy (which of course does not contribute towards ǫgrav). On the other
hand, when one is mixing the products of nuclear burning (i.e., heavy nuclei) outwards against
gravity while mixing unburned stellar material (i.e., light nuclei) downwards, there is an energy cost
involved in doing this (which is incurred throughout the region where material mixed upwards has
a higher mean molecular weight than material mixed downwards). These effects may need to be
accounted for correctly during stages when the star is evolving on a short timescale, which involves
some modification of Eq. 8.3 for ǫgrav.]

A scheme like the above for including a variable that changes in time is usually called an implicit
scheme, since the time derivative is calculated implicitly, using parameters from the new model one
is trying to determine. Schemes which rely only on previous model(s) are called explicit; these are
often easier to code but in order to keep good accuracy small timesteps need to be taken.

For the abundances, an explicit scheme is simpler. In such a scheme, one determine the time
derivatives (dXi/dt)prev from the previous models according to Eq. 9.6 and then for the next model
uses

Xi = Xi,prev +∆t

(

dXi

dt

)

prev

. (9.15)

Note that it is also possible to calculate the chemical evolution using an implicit scheme. For a
more detailed but quite readable discussion, see Eggleton (1971, MNRAS 151, 351). In the same
reference, another choice of independent grid variable is discussed, which allows one to regrid the
model automatically so that fine grid spacing is used where required.

For next time

– Read ahead about the main sequence: textbook §10.6, 13.1.



Fig. 9.1. Effect on the stellar envelope of choosing an incorrect value of Pphot in main sequence stars of
solar metallicity, for a massive star with a fully radiative envelope (O8 V: Teff ≈ 37,000 K, M ≈ 15 M⊙),
an intermediate mass star with very small convective zones in ionization regions (B8 V: Teff ≈ 12,000 K,
M ≈ 2.5 M⊙), and a relatively low-mass star with a convective envelope of non-negligible extent (F0 V:
Teff ≈ 7,200 K, M ≈ 1.2 M⊙). Star symbols (“∗”) indicate choices for Pphot at the relevant Teff , and lines
indicate run of T with P inside the photosphere (solid lines indicate radiative regions, dashed lines indicate
convective regions). Heavy symbols and lines indicate the correct models.



10. Main Sequence and Brown Dwarfs

Textbook: §10.6, 13.1 (p. 446–451)

Zero-age main sequence

The zero-age main sequence (ZAMS) is defined as the beginning of the long, stable period of core
hydrogen burning during the star’s lifetime. Stars burn up their (primordial) deuterium via 2D+p →
3He+γ before this point, while they are still contracting towards the main sequence (see Fig. 10.1).
Also, the initial carbon abundance in stars is much larger than the CN-cycle equilibrium value.
For stars of solar metallicity of mass >∼ 1 M⊙, the reactions that convert 12C to 14N (part of the
CN-cycle) can supply the star’s total luminosity for a brief period at the start of hydrogen-burning.
This stage is so short that it is often ignored — e.g., it is not shown in the evolutionary tracks of
Fig. 10.2 below. In the pre–main-sequence evolutionary tracks of Fig. 7.3, this 12C → 14N stage
causes the last, small upwards-and-downwards wiggle at the end (at left).

Brown Dwarfs

Stars of masses <∼ 0.08 M⊙ do not ignite hydrogen burning in their cores (except possibly for the
brief deuterium-burning stage): see the dashed lines in Fig. 10.1. Such stars are known as brown
dwarfs. A reasonable number of them have been studied, and new spectral classes (e.g., L and T)
have been defined to distinguish them via features in their infrared spectra.

Zero-age main sequence luminosity

For a crude estimate of the luminosity1, we use the energy transport equation in terms of mass
(Eq. 9.4), and apply it at T ≃ 1

2Tc, where we assume Lr ≃ L [why?], r ≃ 1
4R, (see Fig. 4.1 for

n = 3 and also CO, Fig. 11.4), and take some appropriately averaged opacity κ. Furthermore, we
approximate dT/dMr ≃ Tc/M . Thus,

Tc
M

≃ 3

64π2ac

κL

(14R)
4(12Tc)

3
≃ 96

π2ac

κL

R4T 3
c

⇒ L ≃ π2ac

96

R4T 4
c

κM
. (10.1)

Expressing the central temperature in terms of the central pressure and density using the ideal gas
law, and using the expressions for Pc and ρc appropriate for a polytrope with n = 3,

Tc =
µmH

k

Pc,gas

ρc
= 1.95 107 K µβ

(

M

M⊙

)(

R

R⊙

)−1

, (10.2)

where β was defined as the ratio of the gas pressure and the total pressure. Inserting this in Eq. 10.1,

L

L⊙
≃ 10

µ4β4

κ

(

M

M⊙

)3

. (10.3)

Hot zero-age main-sequence stars

For a hot star, electron scattering dominates in the interior. Thus, κ ≃ 0.2(1+X) cm2 g−1 (Eq. 5.10).
For a star with solar abundaces which has just arrived on the main sequence, µ ≃ 0.613, and
L ≃ 4L⊙ (M/M⊙)

3. For intermediate-mass stars, this estimate agrees reasonably well with detailed
models (see Fig. 10.2). The slope, however (L ∝ M3) is slightly too shallow between 2 and 8M⊙,
where the detailed models give L ∝ M3.7; above 8M⊙ it is too steep. These effects are due to the
presence of a central convection zone and the contribution of radiation pressure. The convection
zone increases in size with increasing mass (see Fig. 10.3 and Table 10.1).

1 See KW, chapter 20, for somewhat less crude approximations.



Table 10.1. Fractional sizes of the convective core in main-sequence stars

. . . . . . . . . . . . . . ZAMS . . . . . . . . . . . . . . . . . . . . . . . . . . . TAMS . . . . . . . . . . . . .
M∗ logL log Teff Mcc Mcc/M t M∗ Mcc Mcc/M

(M⊙) (L⊙) (K) (M⊙) (yr) (M⊙) (M⊙)

120 6.254 4.739 102.4 0.853 2.9 106 80.9 63.6 0.786
60 5.731 4.693 46.3 0.772 3.7 106 43.0 27.5 0.640
20 4.643 4.552 10.8 0.540 8.8 106 19.1 6.5 0.339
5 2.720 4.244 1.52 0.304 9.9 107 5 0.39 0.078
2 1.177 3.952 0.46 0.229 1.7 109 2 0.13 0.065
1 −0.207 3.732 0 0 9.7 109 1 0 0

Cool zero-age main-sequence stars

For stars with M <∼ 1M⊙, the opacity is dominated by bound-free processes. Inserting the estimate
Eq. 5.16 in Eq. 10.3, and using ρ ≃ 1

8ρc ≃ 7 ρ (for an n = 3 polytrope) as well as Eq. 10.2,

L

L⊙
≃ 0.07

µ7.5

Z(1 +X)

(

M

M⊙

)5.5 (
R

R⊙

)−0.5

. (10.4)

Thus, given that R depends approximately linearly on M , we find a very steep mass-luminosity
relation, much steeper than that observed or inferred from models. Furthermore, the luminosity
of the Sun is underestimated (L ≃ 0.05L⊙ for µ = 0.613, Z = 0.02, X = 0.708). The reason
this does not work as well as for the massive stars, is that with decreasing mass, more and more
of the outer region becomes convective; see Fig. 10.3. Only ∼ 2% of the Sun’s mass is convective
(although this is nearly the outer ∼ 30% of the Sun’s radius), so a n = 3 polytrope is not completely
unreasonable, but stars of M <∼ 0.2M⊙ are completely convective (so a n = 1.5 polytrope would be
more appropriate). Furthermore, for very low masses, degeneracy becomes important.

Evolution on the main sequence

For both hot and cool stars, the luminosity scales with a high power of the mean molecular weight.
As hydrogen is burnt, µ increases, and therefore the luminosity will increase as well, as can be seen
in Fig. 10.2. Numbers for parameters at the beginning and end of the main sequence for massive
stars are given in Table 10.1.

For next time

– Make sure you understand why the slopes from the simple estimates are somewhat different from
those from detailed models.

– Read about the end of the main sequence: remainder of §13.1.



Fig. 10.1. Luminosity as a function of time for very low mass stars (solid lines) and brown dwarfs (dashed
lines). The horizontal plateaus in the tracks at upper left show where the period of deuterium burning halts
the pre–main-sequence luminosity decline (for a period of up to a few million years) in very low mass stars,
as well as in brown dwarfs. Brown dwarfs models of mass < 0.015 M⊙ (i.e., less than about 15 Jupiter
masses) have been designated as “planets” (dot-dashed lines) in this figure.



Fig. 10.2. HRD for the ZAMS and sev-
eral evolutionary tracks, calculated with the
Eggleton evolutionary code. The labels are
masses in solar units. The symbols indicate
components of binaries for which the masses,
radii, and luminosities were determined ob-
servationally. For the tracks, the solid, dot-
ted, and dashed portions indicate where evo-
lution is on a nuclear, thermal, and intermedi-
ate time scale, respectively (evolution is up-
wards and rightwards from the ZAMS; the
brief initial 12C → 14N stage is not shown).
For masses ≥ 2 M⊙, the end of the main se-
quence occurs at the first wiggle in the tracks,
a bit to the right of the ZAMS. From Pols et
al. (1995, MNRAS 274, 964).

Fig. 10.3. Mass fraction m/M ≡ Mr/M as a function of stellar mass M at the ZAMS. Convective regions
are indicated with the curls. The solid lines indicate the fractional masses at which r/R = 0.25 and 0.5, and
the dashed ones those at which Lr/L = 0.5 and 0.9. Taken from KW (their Fig. 22.7).



11. The end of the main sequence

Textbook: §13.1, p. 451ff

Hydrogen exhaustion in the core

For more massive stars, hydrogen exhaustion will happen in a larger region at the same time, while
for less massive stars, it will initially just be the centre itself. Since in the core one gets Lr = 0, also
the temperature gradient dT/dr = 0, i.e., the core will become isothermal.

From our discussion of polytropes, it was clear that completely isothermal stars cannot exist
(γ = 1 and n = ∞), but is it possible to have an isothermal core? In the context of polytropes, one
could rephrase this as the requirement that averaged over the whole star one has γ > 1.2 (n < 5).
The result is that for a star in hydrostatic equilibrium, only a relatively small fraction of its mass
can be in an isothermal core.

Schönberg-Chandrasekhar limit

For the isothermal core, one can rederive the virial theorem for the case that the pressure external
to the object under consideration is not equal to zero. One finds

2Ucore = −Ωcore + 4πR3
corePcore, (11.1)

where Pcore is the pressure at the outer boundary of the core.
For an isothermal core (and ideal gas), the internal energy is simply Ucore =

3
2NcorekTcore, with

Ncore = Mcore/mHµcore the number of particles in the core. Writing Ωcore = −qcoreGM2
core/Rcore,

and solving for Pcore, one finds,

Pcore =
3

4π

kTcore
mHµcore

Mcore

R3
core

− qcore
4π

GM2
core

R4
core

. (11.2)

Thus, the expression contains two competing terms, the thermal pressure (∼ ρTcore) and the self-
gravity (∼Rcoreρg). Now consider an isothermal core with fixed mass Mcore. For very low external
pressure Penv, the core can provide a matching Pcore for relatively large radius where the thermal
term dominates. For increasing external pressure, the radius has to decrease, but clearly at some
point the self-gravity will become important, and it becomes impossible to provide a matching
Pcore. This maximum pressure can be determined by taking the derivative of Eq. 11.2 with respect
to radius2, and setting it equal to zero. One finds,

Rcore =
4

9
qcoreGMcore

mHµcore

kTcore
⇒ Pcore,max =

3

16π

(

9

4

)3 (
kTcore
mHµcore

)4
1

q3coreG
3M2

core

. (11.3)

Thus, Pcore,max ∝ T 4
core/µ

4
coreM

2
core, i.e., the maximum pressure an isothermal core can withstand

decreases with increasing core mass.
For the pressure exerted by the envelope, generally P ≈ GM2/R4, ρ ≈ M/R3, and, since also

Penv = kTenvρenv/mHµenv, Tenv ≈ (mHµenv/k)(GM/R). Combining,

Penv = Cenv
1

G3M2

(

kTenv
mHµenv

)4

, (11.4)

where Cenv is a constant depending on the precise structure of the envelope.
At the boundary, Tenv = Tcore and Penv < Pcore,max, i.e.,

Cenv
1

G3M2

(

kTcore
mHµenv

)4

< Ccore

(

kTcore
mHµcore

)4
1

G3M2
core

. (11.5)

2 In CO, p. 492, the derivative is taken with respect to mass. This is rather illogical.



Inserting numerical values of Ccore and Cenv obtained from more detailed studies, one finds

Mcore

M
<∼ 0.37

(

µenv

µcore

)2

, (11.6)

For a helium core (µcore ≃ 4
3 ) and an envelope with roughly solar abundances3 (µenv ≃ 0.6), one

thus finds a limiting fractional mass MSC ≃ 0.08M .

As a function of mass

With the above, we can describe what will happen when hydrogen is exhausted in the core,

– For massive stars (M >∼ 6M⊙), the convective core at hydrogen exhaustion exceeds 8% of the
total mass (see Table 10.1). Thus, an isothermal core cannot form. Instead, the core will contract
until helium fusion starts. This happens on a thermal timescale, and causes the star to become
a red giant (see next chapter).

– For intermediate-mass stars (1.4 <∼ M <∼ 6M⊙), an isothermal core will form once hydrogen is
exhausted in the centre. Around this core, hydrogen burning will continue, leading to growth
of the core. This phase of the evolution is called the sub-giant branch. It will continue until
the mass of the core exceeds 8% of the total mass, at which time the core has to contract, and
the star becomes a red giant on the thermal timescale, as above. For stars more massive than
M >∼ 2.4M⊙, the contraction will be stopped by the ignition of helium burning, while for lower
masses degeneracy sets in.

– For low-mass stars (M <∼ 1.4M⊙), the isothermal core becomes degenerate before the critical
mass fraction is reached, and no rapid phase of contraction occurs. Thus, the star moves to the
red-giant branch on the nuclear time scale of the shell around the core.

For next time

– Ensure you understand why stars of different mass behave differently when Hydrogen is ex-
hausted in their cores.

3 In general, some processed material will be present in the envelope as well.



12. The various giant branches

Textbook: This supplements (and partly replaces) §13.2

General considerations

From observations, we see that stars which have left the main sequence, cluster predominantly
near low temperatures, but high luminosity. Thus, their radii are large, i.e., they are giants. From
observations of globular clusters, one finds that even low-mass stars can become extremely luminous
in this phase (see Fig. 1.2). The two basic questions to be addressed are why stars become so cool,
and how they can become so much more luminous than they were on the main sequence. Both
properties are reproduced in stellar models, but it is not always simple to point to a specific reason
why a star behaves as it does. Indeed, even in the last decade there have been a number of articles
with titles like “why stars inflate to and deflate from red giant dimensions” (Renzini et al., 1992,
ApJ 400, 280) and, in response, “on why intermediate-mass stars become giants after the exhaustion
of hydrogen in their cores” (Iben, 1993, ApJ 415, 767). Out of necessity, therefore, the discussion in
this chapter will be somewhat vague. To give a framework, schematic evolutionary tracks for a low-
mass (1M⊙), an intermediate-mass (5M⊙), and a high-mass (25M⊙) star are shown in Fig. 12.1.
One sees that intermediate-mass stars go through the most contorted track. Therefore, the track for
the 5M⊙ case is shown in more detail as well, with the important physical processes in the various
phases indicated; since this track was taken from an early (less accurate) computation, more recent
evolutionary tracks are shown in Fig. 12.2, plus a schematic 5M⊙ case (Fig. 12.3) and 1M⊙ case
(Fig. 12.4) with insets showing schematically the abundance profiles at various stages during the
star’s evolution.

Regarding the question of the increase in luminosity seen for giants, it is worthwhile to think
back to what determines the luminosity on the main sequence. There, in essence, the luminosity is
determined by how quickly the envelope can transfer and radiate energy; the star will contract until
nuclear fusion generates a matching amount of energy in the core. The principal difference for a
giant is that the burning occurs in a shell, whose properties are not just determined by the envelope
above, but also by the core below.

As a star’s envelope expands and it becomes a red giant (approaching the Hayashi track), the
convective envelope eventually comprises most of the tenuous envelope. In other words, the base of
the convective envelope moves inwards in mass Mr (though not necessarily in radius), reaching into
regions that had been partially processed by nuclear burning on the main sequence (CN-cycle and
p-p chain reactions). This processed material is thus mixed throughout the convective envelope to
become visible at the star’s surface, a process known as “first dredge-up” (this stage is indicated in
Figs. 12.3 and 12.4). This yields reduced 12C/13C and C/N ratios at the stellar surface; observations
of these ratios in stars during this stage of evolution are in fairly good agreement with what is
predicted by computational models.

Low mass giants

For low-mass stars, the contraction of the core after hydrogen exhaustion is stopped by electron de-
generacy pressure before the core becomes hot enough for helium ignition. Therefore, the Schönberg-
Chandrasekhar limit becomes irrelevant, and the core can grow until something more drastic hap-
pens. Since no energy is generated within the core, the temperature in the whole core will equilibrate
with that in the surrounding hydrogen-burning shell.

Shell burning around a degenerate core

In the layers near the dense, concentrated core, the pressure structure is dominated by the strong
gravitational attraction of the core rather than by the pressure of the overlying envelope. The core



Table 12.1. Dependencies of ρ, T , P , and L in a shell on Mcore and Rcore.

case η ν α1 α2 β1 β2 γ1 γ2 δ1 δ2

CNO, hot 2 13 −3 2.33 1 −1 −2 1.33 7 −5.33

CNO, cool 2 16 −4 3.33 1 −1 −3 2.33 8 −6.33

triple-α 3 22 −4.5 4 1 −1 −3.5 3 8.5 −7

Taken from Refsdal & Weigert (1970, A&A 6, 426). For all cases, it is assumed
that electron scattering dominates the opacity (i.e., a = b = 0).

becomes more and more dominant as the star evolves, since the core grows in mass and shrinks in
size, while the envelope becomes more and more tenuous.

In the limit that the envelope can be considered weightless, and the shell contains a mass much
smaller than that of the core (and provided also that the base of the convective envelope does not
actually reach into the burning shell — see “hot bottom burning” below), the properties of the
shell depend only on the mass Mcore and radius Rcore of the core. This implies that the length scale
in the shell will be set by Rcore, i.e., that if one compares models for different (Mcore, Rcore), the
run of pressure, density, etc., with r/Rcore will be very similar. For instance, if in a given model,
P/Pcore = f(r/Rcore), where Pcore is the pressure at the bottom of the shell (i.e., the outer boundary
of the core) and f(r/Rcore) a functional dependence on r/Rcore, one then expects that in another
model P ′/P ′

core = f(r′/R′
core). This expectation is confirmed by real models (see Fig. 12.5). Refsdal

& Weigert (1970, A&A 6, 426) used such assumptions to derive the dependencies of ρ(r/Rcore),
T (r/Rcore), P (r/Rcore), and Lr(r/Rcore) on Mcore and Rcore (see also KW, § 32.2). They assumed
the ideal gas law, an opacity law κ = κ0P

aT b, and energy production ǫ = ǫ0ρ
η−1T ν (via reactions

with η reactants, where η = 2 except for the 3α reaction), and found

ρ(r/Rcore) ∝ Mα1
coreR

α2
core, α1 = − ν−4+a+b

η+1+a , α2 = ν−6+a+b
η+1+a ,

T (r/Rcore) ∝ Mβ1
coreR

β2
core, β1 = 1, β2 = −1,

P (r/Rcore) ∝ Mγ1
coreR

γ2
core, γ1 = 1− ν−4+a+b

η+1+a , γ2 = −1 + ν−6+a+b
η+1+a ,

Lr(r/Rcore) ∝ M δ1
coreR

δ2
core, δ1 = ν − η ν−4+a+b

η+1+a , δ2 = −ν + 3 + η ν−6+a+b
η+1+a .

(12.1)

One sees that the temperature scales with Mcore/Rcore independent of details (a, b, n, ν) of the
energy generation process and the opacity law (indeed, the scaling follows directly from hydrostatic

equilibrium and the ideal gas law). Thus, for a degenerate core with Rcore ∝ M
−1/3
core , one expects

T ∝M4/3
core. The implied strong dependence of the luminosity on the core mass is only partly offset

by the fact that the pressure and density actually decrease with increasing Mcore. Indeed, from
numerical values (see Table 12.1), one sees that one has stellar luminosity L ∝ M∼9

core for a shell
in which hydrogen is burned via the CNO cycle; this is confirmed by detailed models, which find
L ∝M∼8

core on the upper RGB (where the envelope is the most extended).
Thus, we see that the luminosity increases very steeply with increasing core mass. Since the

envelope is almost completely convective, and the star is close to the Hayashi line, the effective
temperature cannot increase much. In the HR diagram, the star therefore moves almost straight up,
along the so-called ascending or red giant branch (RGB). As the hydrogen shell burns its way
outwards in mass Mr, the convective envelope retreats ahead of it: deepest first dredge-up occurs
not far above the base of the RGB (see Fig. 12.4).

On the upper RGB of low mass stars (subsequent to first dredge-up), there is evidence of some
further CNO-cycle processing of envelope material, in spite of the fact that the base of the convective
envelope is at temperatures far too low for such nuclear processing. This indicates that a slow “extra”
mixing mechanism is at work (probably driven by rotation effects), mixing some material between



the convective envelope and the hydrogen-burning shell. (This is a similar mechanism to that which
causes the main-sequence lithium depletion in stars like the Sun.)

Evolution of the degenerate core

While the core grows, it remains approximately isothermal, and at the temperature of the shell
surrounding it. In principle, the increase in temperature goes towards lifting the degeneracy, but
this is more than compensated for by the increase in core density, ρcore ∝Mcore/R

3
core ∝M2

core; see
Fig. 3.2.

As one increases the density and temperature, however, the helium ions (which are not degen-
erate) start approaching each other more and more closely during interactions, and will start to
fuse when the core mass increases to 0.45M⊙ (and Tcore ≃ 108K). [Verify that you understand
why this is independent of the total mass of the star.] The fusion will increase the temperature in
the core, but will not reduce the density at first, since the pressure exerted by the ions is small
compared to the electron degeneracy pressure. With increasing temperature and constant density,
energy generation increases exponentially, until finally the thermal pressure becomes high enough
to force the core to expand. By this time, the luminosity from the core has become ∼1011L⊙, i.e.,
roughly equal to that from the entire Galaxy! Unfortunately, it does not seem possible to observe
this helium core flash: the energy is used to expand the envelope.

From detailed models, it turns out that as the degenerate core grows hotter, in its centre the
pressure and temperature are sufficiently high that energy is lost in neutrino creation. As a result,
the centre will be slightly cooler, and helium core flash ignition will be in a shell around it. Burning
will move inwards as the core is heated (possibly in a succession of mini-core-flashes following the
main core flash), until degeneracy is lifted throughout the core.

After the helium core flash

The evolution during the helium flash is not very well understood, but it appears to be followed by
a phase of quiet helium burning in a non-degenerate core. This core will still haveMcore ≃ 0.45M⊙,
but its radius will have increased significantly. Thus, one expects that the luminosity contributed
by the hydrogen shell will be much smaller, ∼100L⊙ (down from ∼1000L⊙). During this time, the
position of the star in the HR diagram depends on its metallicity, which determines the opacity in
the envelope as well as the efficiency of energy generation in the CNO cycle (via XCNO). For solar
metallicity, stars remains near the Hayashi track, in the so-called red clump (see the 2 M⊙ track
in Fig. 12.2, and the 1 and 2 M⊙ tracks in Fig. 10.2). For lower metallicities, stars will move to
the horizontal branch (see Figs 12.1, 12.4, 1.1 and 1.2). The position on the horizontal branch is
determined by the envelope mass as well as the metallicity. Mass loss of order 0.2 M⊙ appears to
take place between the main sequence and the horizontal branch; possibly there is a mass ejection
episode due to the helium core flash (although pure stellar wind mass loss on the RGB has not
been ruled out). Some such low mass stars traverse a region of the HR diagram where their outer
envelopes are pulsationally unstable, becoming RR Lyrae variables.

After helium is exhausted in the core, the core, now composed of carbon and oxygen, will become
degenerate, and burning will continue in a helium shell. This shell will become brighter as the core
mass increases, and the star starts to move up the asymptotic giant branch (AGB). During the
later phases, the burning in the helium shell becomes unstable, leading to so-called helium shell
flashes, which will be discussed below. During this phase, the envelope mass is reduced by nuclear
burning and mass loss. The latter becomes especially important at very high luminosities, when
the envelope becomes pulsationally unstable (becoming, e.g., Mira variables, with large pulsation
amplitudes). At that time, a so-called “super-wind” starts. Once the hydrogen-rich envelope has
dwindled to <∼1% of the total mass, it deflates, and the star moves towards the blue at essentially
constant luminosity, burning what little material remains. (After the star has left the AGB, there
is a period when its surface is hot enough to yield UV radiation that ionizes the material lost most



recently, which is then visible as a glowing “planetary nebula” — a misnomer, since it has nothing
to do with planets). The star will be left with roughly 10−2M⊙ of helium and 10−4M⊙ of hydrogen,
around a carbon-oxygen white dwarf. From observations of white dwarfs, one finds masses mostly
in the range 0.55–0.60M⊙. Apparently, the remainder of the envelope mass of low-mass stars is lost
in their latest stages.

Intermediate mass giants

For an intermediate-mass star, after hydrogen is exhausted in the core, burning continues in a
thick shell around an isothermal core. This can be seen in Fig. 12.6 (following point C), where the
changing interior structure of a 5M⊙ star is shown. This corresponds to the phase between points 4
and 5 in Fig. 12.1. A while after point C, the isothermal core reaches the Schönberg-Chandrasekhar
limit, and the star moves rapidly towards the red. During this phase, the surface luminosity drops,
but this is mostly because part of the energy generated in the core is used for the expansion of the
envelope (see below). The star stabilizes again when helium is ignited in the core, and the envelope
has become largely convective (point E in Fig. 12.6, point 7 in Fig. 12.1, point 9 in Fig. 12.3 — this
is the point of deepest first dredge-up in intermediate mass stars).

At this phase, the core (which initially has mass ∼0.75M⊙ in a 5M⊙ star) hardly notices that
there is another 4M⊙ of shell and envelope around it, and its structure and luminosity are very
similar to what they would have been if the core had been an isolated 0.75M⊙ helium main-sequence
star. This reflects the fact that the envelope has become so dilute that it exerts negligible pressure.
Like for the low-mass stars, the conditions in the hydrogen-burning shell depend almost completely
on the properties of the helium-burning core.

When the helium core evolves, its “effective temperature” will at first, like that of a hydrogen
main-sequence star, become slightly lower, and its radius will become slightly bigger. As a result,
the hydrogen shell becomes less luminous. Since the shell produces most of the star’s luminosity,
the luminosity will drop somewhat (just after point E in Fig. 12.6, between 7 and 8 in Fig. 12.1).
The mass of the helium core, however, will increase, and this causes the core to move upward in
mass along the helium main-sequence, towards somewhat larger radius and higher temperature. The
higher temperature causes an increase in the energy production in the shell, and therewith a rise in
the star’s luminosity. This corresponds to the increase in luminosity up to point G seen in Fig. 12.6
(between 9 and 10 in Fig. 12.1). During portions of these “blueward loops” in the HR diagram,
intermediate mass stars may also lie in regions of the HR diagram where their outer envelopes are
pulsationally unstable, becoming Cepheid variables.

When helium is exhausted in the centre, an isothermal carbon-oxygen core forms, and around it
helium is burnt in a thick shell (F to G in Fig. 12.6; 10 to 11 in Fig. 12.1). When the core reaches
the Schönberg-Chandrasekhar limit, it will collapse (note that the mass of the carbon-oxygen core
should be measured relative to the mass of the helium star). As a result, the helium shell will become
much more luminous, the layers above it will expand, and the hydrogen shell will be extinguished
(H–K, 13–14; note that the extra loop in the HR diagram shown in Fig. 12.1 between points 11
and 14 is probably spurious, as it does not show up in more recent stellar models such as those in
Figs. 10.2 and 12.2). This expansion causes the convective envelope to engulf hydrogen-exhausted
material that the hydrogen shell had left behind, in a process known as “second dredge-up”.
(This occurs near point 15 in Fig. 12.3. Low mass stars, where the hydrogen-burning shell is not
extinguished, do not experience second dredge-up.) The core becomes degenerate, and at first there
is only a helium shell around it. As the shell eats outwards, it comes close to the position where
second dredge-up has left hydrogen-rich material, and the hydrogen shell is re-ignited.

From here on, the evolution becomes similar to the late evolution of low-mass stars. The helium
shell becomes unstable, and near the top of the asymptotic giant branch a super wind sets in, which
limits the growth of the degenerate core. When the envelope has become too tenuous, it deflates,
the star moves to the blue, and a white dwarf is formed.



High mass giants

For even more massive stars, after hydrogen exhaustion the core contracts immediately to helium
ignition. This slows down, but does not stop the star from moving across the HR diagram. For
the 25M⊙ star shown in Fig. 12.1, helium is exhausted while the star is only midway over to the
red-giant branch. At that point, the core contracts further, and carbon is ignited. After that, things
move on very fast, and the star soon explodes as a supernova.

The evolution of these massive stars is complicated greatly by mass loss, even on the main
sequence. Due to mass loss, the whole hydrogen-rich envelope may disappear, in which case the star
becomes a helium star, and moves to high temperatures in the HR diagram. Indeed, for very massive
stars, this is virtually unavoidable, as their luminosity on the way to the red giant branch exceeds
the Eddington luminosity, and their envelopes are rapidly blown off. This results in an empty region
in the top right of the HR diagram, above and to the right of the Humphreys-Davidson limit (see
Fig. 1.3). Stars close to this limit indeed are observed to have extremely large and variable mass-loss
rates; these are the so-called luminous blue variables.

Helium shell flashes (also called “thermal pulses”)

Above, it was mentioned that the helium shell could become unstable. To see how this arises, we do
a stability analysis for a thin shell and compare this with a similar analysis for a core (which should
be stable). For a core, the mass of the burning region goes as m ∼ ρr3, and expansion in reaction
to an energy perturbation corresponds to a small increase δr. For a thin shell at radius r0 and with
thickness D, the mass in the burning region goes as m ∼ ρr20D. For a small expansion of the shell,
the thickness will increase by δD but r0 will be approximately constant. The corresponding change
in density for the two cases (assuming no change in mass of the burning region) can be written in
fractional units as

core:
δρ

ρ
= −3

δr

r
shell:

δρ

ρ
= −δD

D
= − r

D

δr

r
. (12.2)

In the last equality, we used δr to indicate the change in the outer radius of the shell. Assuming the
layers outside the expanding core or shell change homologously with the outer radius, we have for
both that P ∝ r−4, or δP/P ∝ −4δr/r. For an ideal gas, the temperature T ∝ P/ρ, and thus the
fractional temperature change is δT/T = δP/P − δρ/ρ. Similarly, given an energy generation rate
ǫ ∝ ρλT ν, the fractional change in energy generation rate is δǫ/ǫ = λδρ/ρ + νδT/T . For the two
cases, these fractional changes can be expressed in terms of the fractional change in radius by
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(12.3)

For the core, we thus see that a small expansion (δr > 0), leads to a decrease in temperature and
energy generation rate (δT < 0, δǫ < 0), i.e., the burning is stable. However, for a shell with D ≪ r
(and ν > λ), for a small expansion both T and ǫ actually increase, i.e., burning in a thin shell is
unstable.

While a shell is eating its way out, it tends to become thinner and thus closer to instability.
And indeed the instability also occurs in real and model stars, as can be seen in Fig. 12.7. In the
left panel, one sees that at the start of the instability, the density decreases and the temperature
increases sharply. As a result, the local luminosity becomes several times the total stellar luminosity.
This continues until the shell expands sufficiently (i.e., its thickness is no longer much smaller than
the radius). Then it gently settles back, until the instability sets in again.

Note that while the luminosity in the shell becomes very high, that at the top of the shell
does not increase so dramatically. This is because most of the energy is used to expand the shell.



Furthermore, as the helium shell expands, the temperature in the hydrogen shell drops, and hydrogen
burning is temporarily extinguished. Therefore, the luminosity of the star actually goes down during
a shell flash. As on the RGB, for stars where envelope convection does not reach into the hydrogen-
burning shell, the star’s (interflash) surface luminosity is determined only by the star’s core mass
(and metallicity) — after the first few helium shell flashes, a “universal” core-mass–luminosity
relation is approached, which is almost linear in the core mass.

In the right-hand panels of Fig. 12.7, one sees that a small convection zone appears during the
shell flash. This will distribute processed material all through the region between the hydrogen
and helium shells. While the shell flash is occurring, the lower boundary of the outer (envelope)
convection zone retreats somewhat, in response to the lower hydrogen shell luminosity, and then
descends again. Fig. 12.8 shows a case where “third dredge-up” occurs, in which the envelope
convection descends below the position of the (extinguished) hydrogen shell into the intershell region,
and can thus bring up highly processed material to the surface. Observationally, this leads to the
formation of S stars (enriched in “s-process” isotopes, that result from slow neutron irradiation)
and carbon stars (where the surface C/O ratio exceeds unity).

Surface carbon enrichment (possibly yielding a carbon star) is fairly straightforward, as the 3α
reaction during the earlier helium shell flash has enriched the intershell region with 12C. Formation of
S stars is less simple. The observed s-process isotopes at the surface of low mass S stars (and carbon
stars) would have required slow irradiation of iron nuclei by a fairly large number of neutrons (the
iron is present in the original stellar composition, part of the metallicity). The 22Ne(α, n) reaction
can produce a few neutrons during the helium shell flash, but not enough — the helium-burning
temperature is not high enough for this reaction to be significant. On the other hand, the 13C(α, n)
reaction would occur at lower temperatures, but the CNO-cycle burning leaves behind almost no 13C.
This problem could be solved if, during the third dredge-up, a relatively small amount of hydrogen
was mixed downwards into the carbon-rich intershell region (computational models do not exhibit
such behavior, but there are several hard-to-model processes that might yield such a result, e.g.,
semiconvection, partial convective overshoot, rotation-induced mixing, etc.). As this region heated
up again, it would burn up the hydrogen via the 12C(p, γ) reaction, yielding a region with a relatively
large 13C abundance. Later, this region would grow hot enough for the 13C(α, n) reaction to burn
up the 13C and irradiate the local material with neutrons, yielding s-process isotopes. These would
be engulfed by the next flash-driven intershell convective region, which would mix them throughout
the intershell region; some would then be mixed to the surface in the following dredge-up episode
(see Fig. 12.8).

Hot bottom burning

In stars of mass >∼ 4M⊙, the base of the convective envelope eventually reaches into the hydrogen-
burning shell during the interflash period (“hot bottom burning”). This can result in CNO-cycle
processing of the envelope, affecting the envelope CNO isotope ratios. When hot bottom burning
occurs, the shell’s properties no longer depend only on the core mass: it is also linked to the surface
via the the envelope convection. The star’s luminosity increases significantly above the value that
would have been expected from the core-mass–luminosity relation mentioned above.

The envelope

In the above discussion, we have mostly ignored the envelope. This is not unreasonable if it is
as tenuous as it has to be when the star has swollen to giant dimensions, but we have not yet
addressed why this swelling actually happens. It is clear that real stars do it, and their behavior can
be reproduced by models, but it is not so clear what physical mechanism dominates this process.
Indeed, as was clear from the beginning of this chapter, this question is still debated (see the
references quoted there for more detail).



Partly, it seems it is related to the way the opacity varies with density and opacity. Quite
generally, as a star becomes more luminous, its radius increases and effective temperature decreases
a little. This in itself is not enough to bring the star over to the red giant regime. As the temperature
in the outer layers decreases, however, the opacity there increases quite strongly, since it is dominated
by bound-free processes (the lower temperature leads to lower ionization states of the metals, which
therefore can absorb photons more easily). Therefore, the luminosity cannot easily be transported
anymore, and part of it is trapped, leading to further expansion. At some point, this apparently
can become a runaway process, in which the envelope cools more and more, becomes more and
more opaque, traps more and more of the luminosity, and expands to larger and larger radii. It only
stops when the star reaches the Hayashi line, where the envelope has become almost completely
convective, and energy can be transported more easily.

This runaway expansion may be responsible for intermediate-mass stars crossing the HR diagram
very fast. Observationally, this results in a lack of stars between the main sequence and the giant
branches, in the so-called Hertzsprung gap. When the luminosity decreases, it appears the inverse
instability can happen, where the envelope heats a little, becomes less opaque, therefore shrinks
a little, releasing energy which increases the temperature, etc. This deflation instability might be
responsible for the blue loops seen in the evolutionary tracks of intermediate-mass stars.

For next time

– Read textbook §15.1 on the fate of high mass stars, and §15.3 on core collapse (up to p. 534).



Fig. 12.1. (Left) Schematic evolutionary tracks
in the HR diagram for stars of low, inter-
mediate, and high mass. Heavy portions indi-
cates phases where the evolution proceeds on
a slow, nuclear timescale. Indicated are the
first and second “dredge up,” phases in which
the outer convection zone reaches down to lay-
ers with processed material. A third dredge-up
occurs during the thermal-pulse phase, which
is also indicated. Note that the luminosity at
which a star leaves the AGB is a conjecture
based on observed white-dwarf masses. (Bottom)
Evolutionary track of a 5M⊙ star in detail,
with important physical processes for the differ-
ent phases indicated (note that the loop from
point 11 to point 14 is probably spurious — this
track was taken from a less accurate computa-
tion, performed several decades earlier). Both fig-
ures taken from the review of Iben (1991, ApJS
76, 55).
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Fig. 12.5. Run of pressure as a function of radius
in units of the core radius for two RGB models
with M = 1.4M⊙ but different core masses and
radii. Note how similar the two curves are, apart
from a constant offset (which is a function of the
core properties only). The striped area indicates
the extension of the burning region within the
shell (0 < Lr < 0.99L). Taken from Refsdal &
Weigert (1970, A&A 6, 426).

Fig. 12.6. (Upper left) Interior structure of a 5M⊙ star during its evolution. “Clouds” indicate convective
regions, heavy shading energy generation at rates ǫ > 103 erg g−1 s−1, and stippling variable chemical compo-
sition. (Lower left) Evolutionary track in the HRD for the same model. (Right) Radial variation of different
mass shells during the evolution of a 7M⊙ star. The letters A,. . . ,E correspond to the same evolutionary
phases labeled for a 5M⊙ star in the left-hand panels. Taken from KW, their Figs 31.2, 3.



Fig. 12.7. Shell flashes. (Left) The four panels give the evolution of the temperature and density in the shell
at the position of maximum energy generation, luminosity at that position and of the shell as a whole, and
surface luminosity. (Top right) Details of the star’s structure near the shell during two shell flashes. (Bottom
right) Evolution of the star’s structure during a series of shell flashes. Taken from KW, their Figs 33.3, 4, 5.
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Fig. 12.8. (Left) Interior structure and surface, hydrogen shell, and he-
lium shell luminosities during helium shell flashes with third dredge-up.
The hydrogen shell advances by ∆MH between flashes, with this advance
then being “set back” by ∆Mdredge, the amount of mass “dredged up”.
(Above) Schematic of the steps yielding s-process enrichment; note that
the mechanism by which protons are mixed downwards into the carbon-
rich intershell region is not well understood.



13. The end of a star’s life

Textbook: §15.1, 15.3 (up to p. 534; different emphasis)

Dwindling into oblivion . . .

A very simple picture of the evolution of a star can be obtained from looking just at the changes
in central density and temperature, as is done in Fig. 13.1. While a star contracts more or less
homologously, and the core is not degenerate, one has ρ ∝ R−3 and T ∝ R−1, from which it follows
that T ∝ ρ1/3. This behaviour can indeed be seen in the lower left corner of the figure.

The demarcation between the regions in ρ, T space where the ideal gas law holds and where
degeneracy is important, is described by a line T ∝ ρ2/3. Therefore, during contraction, the core of
a star comes closer and closer to being degenerate. Before doing so, however, it may reach conditions
sufficient to start nuclear processing, indicated by the various ignition lines in the figure. If it does
not even reach hydrogen ignition, it becomes a brown dwarf.

When hydrogen is ignited, the properties can remain similar, while the star is on the main
sequence. When hydrogen is exhausted, however, the core starts to contract again. For low-mass
stars, we saw that the core becomes degenerate before helium is ignited. If the star does not have
sufficient mass, the core cannot grow up to 0.45M⊙, and helium will not be ignited; the star will
dwindle, and become a helium white dwarf.4

For both low and intermediate-mass stars, the carbon-oxygen cores become degenerate after
helium burning. In principle, if the star were massive enough, the core might grow sufficiently due
to shell burning to ignite carbon burning. If so, the star would likely explode, leaving no remnant. In
practice, however, it seems the super wind intervenes, and no carbon-oxygen cores above ∼1.2M⊙
are formed.

. . . or going out with a bang

For high-mass stars, the carbon-oxygen cores do not become degenerate, igniting core carbon burning
instead, and these stars can continue to further burning stages as described in §8. The stages follow
each other more and more rapidly, as neutrino losses become more and more important, while the
energy gain from the fusion dwindles (Fig. 8.1). Some typical numbers are listed in Table 13.1. (It is
possible that stars in a narrow mass range near 8M⊙ may proceed no farther than carbon burning,
and end up as oxygen-neon-magnesium white dwarfs.)

While the next stage starts in the core, the burning of lighter elements will still continue in
shells. As a result, the structure of a high-mass star near the end of its life becomes somewhat akin
to that of an onion, in which regions with different chemical compositions are separated by burning
shells (see Fig. 13.2).

When an iron core is formed, no further energy can be gained by fusion, since iron has the largest
binding energy of all elements. In order to match the neutrino losses, therefore, the core has to shrink.
This will cause the temperature to rise, and at T > 5 109K the photons become energetic enough
to break up the iron nuclei, into α particles, protons and neutrons. These reactions are endothermic
and thus cool the core. As a result, the pressure drops, the core shrinks further, more iron becomes
disintegrated, etc. At the same time, neutrinos keep on removing energy. Furthermore, as the density
increases, electrons are being captured by remaining heavy nuclei (leading to neutronisation, i.e.,
converting a proton into a neutron, with the emission of a neutrino), thus reducing the pressure
further. All these processes quicken the collapse.

4 Such low mass stars have not yet had time to finish their main-sequence lives even if they were formed
very early on — the universe has not lived long enough. In binaries, however, somewhat more massive stars
can be “stripped” of their envelopes by mass transfer onto a binary companion while they are on the red
giant branch, and these can indeed leave helium white dwarfs.



Table 13.1. Neutrino luminosities and timescales of late burning phases

Burning . . . . . . . .15M⊙ . . . . . . . . . . . . . . . . 25M⊙ . . . . . . . .
stage Lν/L τ Lν/L τ

(L ≃ 104 L⊙) (yr) (L ≃ 3 105 L⊙) (yr)

C 1.0 6.3 103 8.3 1.7 102

Ne 1.8 103 7 6.5 103 1.2
O 2.1 104 1.7 1.9 104 0.51
Si 9.2 105 0.017 3.2 106 0.004

Taken from KW, their Table 33.1

At first, the core collapses roughly homologously (i.e., velocity proportional to radius), but soon
this would require speeds in excess of the free-fall speed in the outer region. Thus, one has an
inner collapsing core, with the outer core following on the free-fall time. The latter is of order
one second. The collapse of the inner core will stop only when the neutrons become degenerate, at
ρ >∼ ρnuc ≃ 1014 g cm−3. The outer layers are still falling in, however, which leads to the development
of a strong shock wave, which will start to move outward. At the same time, the inner core will
become more massive and, since it is degenerate, smaller.

We now estimate a few quantities for the core, taking M ≃ 1.4M⊙ and ρ ≃ 1014 g cm−3, and,
therefore, R ≃ 2× 106 cm. For these numbers, the potential energy is roughly

Epot ≃
GM2

R
≃ 3× 1053 erg. (13.1)

Since the core was much larger before the collapse, we see that a couple 1053 erg has to be liberated.
We can compare this with the energy required to dissociate the iron in the core. For every nucleon,
ǫdiss ≃ 9MeV ≃ 1.4 10−5 erg is required (see Fig. 8.1). Thus,

Ediss = ǫdiss
M

mH
≃ 2× 1052 erg (13.2)

which is substantially less than the total energy available. Next, compare the potential energy with
the kinetic energy given to the envelope in a supernova explosion. With an envelope mass of 10M⊙
and a typical (observed) velocity of ∼ 104 km s−1, the total kinetic energy is,

Ekin =
1

2
Menvv

2
env ≃ 1052 erg. (13.3)

Thus, there is ample energy available to expel the envelope. The energy emitted in optical light is
∼ 1049 erg, negligible in comparison, but leads to a luminosity similar to that of an entire galaxy
during the roughly one month it lasts. By far most of the energy is lost in neutrinos.

While there is enough energy to expel the envelope, it has proven very difficult to reproduce the
expulsion in models. There are three effects which can help.

1. The shock. There is enough energy in the shock for expulsion, but a lot of the energy is lost as
the shock goes through the relatively dense inner part of the envelope (which is still falling in).
This is because material is shock-heated to such an extend that neutrino losses and dissociation
become important. From simulations, it seems only a very strong shock could cross through
these layers and lead to a prompt hydrodynamic explosion.

2. Neutrino radiation pressure. The core is so dense that it is optically thick to neutrinos. As
a result, the neutrinos have to diffuse out, and for a few seconds the core is a strong neutrino
source (with Lν ≃ 1053 erg s−1). Above the “neutrinosphere”, a fraction of the neutrinos will still
be scattered, causing a radiation pressure term just like that due to photons. By equating the
force due to neutrino scattering, fν = κν(Lν/4πR

2c), with that due to gravity, fg = GMρ/R2,



one can define a neutrino equivalent of the Eddington luminosity, Ledd,ν = 4πGMc/κν . From
calculations, it appears that the pressure due to the neutrinos in itself is insufficient to expel the
outer layers, but that an explosion can be produced in combination with the shock, via strong
heating and convective motion, in the so-called delayed explosion mechanism.

3. Thermonuclear reactions. When the shock arrives outside the original iron core, the shock heating
will increase the speed of the fusion reactions in those regions dramatically. At the increased
temperature, Si-burning results mostly in 56

28Ni. This is an unstable isotope, which decays to
56
27Co through β-decay, with a half-life time of 6.1 d. 56

27Co is unstable as well, and decays to 56
26Fe

(half-life 77.7 d). These and other decay processes keep the supernova bright for a longer time.

Note that the above description of the explosion of a massive star applies to a Type II supernova
(classified as such by virtue of possessing hydrogen lines in its spectrum). Type I supernovae show
no hydrogen lines in their spectra. Type Ia supernovae (with a strong Si II line at 6150 Å) result
from a different mechanism: the explosion of a carbon-oxygen white dwarf, which has ignited due
to accretion from a binary companion. Type Ib supernovae (with helium lines) and Type Ic
supernovae (with no helium lines) appear to be the explosions of massive stars, similar to those
described above, but which have lost their hydrogen envelope, or even their helium envelope, by the
time of their explosion.

Enrichment of the interstellar medium

Supernovae are a major source of heavy elements in the interstellar medium, contributing some
helium, carbon, nitrogen, oxygen, iron, and many other elements. Intermediate mass stars (and even
low mass stars) contribute some heavy elements due to the mass loss that removes their envelopes,
yielding mainly helium, carbon, nitrogen, and s-process elements. There are other sources as well,
including novae (recurrent thermonuclear explosions on the surfaces of accreting white dwarfs in
binary systems) and cosmic rays (which produce beryllium, boron, and lithium by spallation as they
hit heavier nuclei such as carbon in the interstellar medium).



Fig. 13.1. Variation of central density
and temperature during the course
of the evolution of stars of various
masses. The long-dashed line indi-
cates the approximate limit to the
right of which the core becomes
degenerate. Dash-dotted lines indi-
cate regimes where hydrogen, he-
lium, and carbon are ignited. (Note
that these earlier models showed a
9M⊙ star’s core becoming degener-
ate, rather than igniting carbon burn-
ing non-degenerately. Mass loss ap-
pears to terminate AGB evolution be-
fore the C-O core reaches the “C-
flash” ignition line in this diagram.)
Taken from KW, their Fig. 33.6.

Fig. 13.2. “Onion-skin” structure of
a massive star in the very last stages
of its life (not to scale). Typical
fractional masses, temperatures (K),
and densities (g cm−3) are indicated
along the axes. Taken from KW, their
Fig. 33.1.


