
Statistics and Inference
in Astrophysics

Zhu & Menard (2013)

Today: brief intro to
machine learning tools

Machine learning
• Techniques to learn patterns in the data in flexible way; not parameter

inference

• Main tasks:

• Density estimation and clustering: What is the distribution of the data?

• Dimensionality reduction: What are the most important dimensions in
the data?

• Regression: Learn to predict y(x) from (x,y) training data

• Classification: Learn to predict classification labels L from (x,L) training
data

• Distinction between supervised and unsupervised learning

Density estimation
• Have data points {xi} —> what is the density ρ(x)?

• Saw this in bootstrap: ρ(x) = 𝛴i δ(x-xi)

• Parametric: fit ρ(x) with some functional form with
parameters θ, e.g., ρ(x) = N(x|mean,variance) —>
use parameter-inference techniques from L2

• Non-parametric: Similar to sum-of-delta functions, but
replace delta function with a different function —>
build ρ(x) directly from the data without parameters

Simple parametric density
estimation

• For example, model ρ(x) as Gaussian with mean m and variance
v

• Data {xi}, independently drawn w/o error

• Likelihood for individual xi: Li= N(xi|m,v)

• Posterior PDF = Prodi Li

• Optimizing this gives  
m = mean(xi),  
v = (N-1)/N variance(xi)

• No closed-form when data points have individual uncertainties σi

Simple non-parametric
density estimation: histogram
• A histogram is a form of density estimation

• Non-parametric because histogram per se does not
have explicit parameters

• But have hyperparameters: location and width of bins
that need to be chosen; hyperparameters don’t directly
set the density, but constrain, e.g., it smoothness

• Widely used, but often doesn’t give a good
representation of the data, non-smooth, and difficult in
higher dimensions

Histogram example

Ivezic et al. (2014)

Same data, different binning!

Kernel density estimation
(KDE)

• Remember from bootstrap: ρ(x) = 𝛴i δ(x-xi)

• Replace δ(.) with a  
 
kernel K(.) with width h  
x-xi with distance function d(x,xi): 
 
ρ(x) = 𝛴i K(d[x,xi]/hi)

• K(.) could be: tophat function, similar to histogram,
a Gaussian, or …

KDE example

Ivezic et al. (2014)

Tophat

Gaussian 
with different  

widths

KDE: kernels
• Kernels: symmetric functions around zero, positive

everywhere, integrate to 1

• Gaussian convenient,  
but has infinite support:  
need to always use all  
points to get a density  
evaluation

• Epanechnikov optimal  
in that it gives the  
smallest expected  
mean-squared-error: 
K(r = d(x,xi)) = 3(1-r2)/4, r <= 1 Brian Amberg/Wikipedia

KDE: bandwidth
• Need to set width h of the kernel, this is a hyperparameter

• Some rules-of-thumb based on Gaussian data: Scott’s
rule: h = N-1/(dim+4) [if data scaled to have unit variance]  
Silverman’s rule: h = [N*(dim+2)/4]-1/(dim+4) [same scaling]

• Other way: leave-one-out-cross-validation (see last
lecture)

• Or minimize Mean-Integrated-Square-Error

• Can also have variable h that depends on the local
density:  
h(x) = k / [ρ(x)]1/dim,  
higher density —> smaller kernel width

KDE applications
• Easy-to-use and standard tool when you need to estimate

a density

• Examples:

• PDF from MCMC samples

• You have run a bunch of simulations that give points in
some space (e.g., stellar tracks with MESA) and want to
estimate a density covering the whole space

• But difficult to apply when data points have errors and
want to deconvolve

Some examples…

Bovy et al. (2012)

MCMC chain —> KDE PDF Theoretical model points  
—> KDE density

Bovy et al. (2014)

Parametric density estimation with
many parameters: Gaussian mixtures
• Single Gaussian: strongly constrained parametric model;

KDE w/ Gaussian kernel: very flexible, but as many
components as data points

• Gaussian Mixture Model (GMM): in between: model
density ρ(x) as sum of K Gaussians, K < N

• Parameters: amplitudes, means, and variances of all
Gaussians

• ρ(x) = 𝛴k ak N(x|mk,Vk)

• Could optimize likelihood for all parameters….

GMM and EM
• When K becomes large, many parameters —> high-dimensional

parameter space to search for optimal solution

• Expectation-Maximization algorithm: General algorithm to
optimize these kinds of problems

• Add a qik assignment variable to each data point: data point i
drawn from component k where qik = 1 (all other qik= 0)

• If we knew all qi, then optimizing would be easy: 
 
ak = 1/N 𝛴i qik 
meank = mean of those xi with qik = 1 
variancek = variance of those xi with qik = 1

• Expectation-maximization: Can show that following two
steps always increase likelihood  
 
E(xpectation):  
qik = akN(xi|meank,variancek)/ [𝛴l alN(xi|meanl,variancel)] 
 
M(aximization):  
ak = 1/N 𝛴i qik 
meank = 𝛴i qik xi / 𝛴i qik 
variancek = 𝛴i qik (xi-meank)2 / 𝛴i qik

• Always leads to at least a local maximum, convergence
very fast in general

GMM and EM

Gaussian mixture model
• Parametric, but when K is large almost as flexible

as a non-parametric model

• Need to set K, the single hyper-parameter

• Use cross-validation or AIC/BIC

• If you are simply trying to get a good representation
of a density, number K doesn’t matter as long as it’s
big enough

Example

Ivezic et al. (2014)

• Be careful when interpreting components!!

Gaussian mixtures with errors:
extreme deconvolution (XD)

• If data have individual uncertainties
(heteroskedastic uncertainties), can still fit a
Gaussian mixture model quickly

• Trick is to include more hidden variables like the qik:
true values xik if point i was drawn from component k

• Adds a few simple update steps (Bovy et al. 2011)

• Implemented in astroML, fast C version at github/
jobovy/extreme-deconvolution

XD example

Ivezic et al. (2014)

Clustering

• Example of unsupervised learning: given set of
data xi, what are the clusters / classes that this data
can be divided into?

• Could use a density estimate and find peaks or
clearly separated points

• Simplest stand-by algorithm: K-means

K means
• Fix number of clusters K

• Optimize 𝛴k 𝛴i in k |xi-mk|2

• Like Gaussian mixture model, but with hard assignments

• Optimization algorithm:  
1. Start with set of {mk}  
2. Assign each xi to its nearest mk 
3. Compute new mk as the mean of all of the xi  
 assigned to cluster k  
4. Go back to 2.

• Could also use medians: K medians

K means example

Ivezic et al. (2014)

Clustering with Gaussian
mixtures

• Can work much better
because background
can be fit out

Bovy et al. (2009)

Procedural clustering
• Gaussian mixture and K-means have the advantage that they

optimize an objective function (the likelihood), so the outcome
should not depend on how you found the optimal solution

• Procedural clustering defines clusters in a procedural way

• Hierarchical clustering:  
1. Start with N clusters, N=#data  
2. Join two clusters to form N-1 clusters 
3. Repeat

• Join based on: minimum distance between clusters (minimum
spanning tree) —> extended clusters, maximum distance between
clusters —> compact clusters, friends-of-friends is further example

Dimensionality reduction:  
PCA and ICA

Dimensionality reduction
• Astronomical observations are by their nature high-

dimensional

• Need to focus on most important dimensions in the
data

• Those dimensions are not necessarily aligned with
observed axes, e.g., pixels in a spectrum

Ivezic et al. (2014)

Principal Component
Analysis (PCA)

Ivezic et al. (2014)

• Data in D-dimensional space

• Find direction with highest variance

• Rotate such that that direction is x1

• In the remaining (D-1)-dimensional space do the
same: find direction with highest variance, rotate
that to x2

• and so on

Principal Component
Analysis (PCA)

PCA using eigenvectors
• Can determine PCA components using eigendecomposition of the

data’s variance tensor CX = XTX/[N-1]

• First component r1 should minimize r1
TCXr1 and |r1| = 1: introduce

Lagrange multiplier λ1  
 
Minimize r1

TCXr1 - λ1(r1
Tr1-1) 

 
CXr1 - λ1r1 = 0 —> r1 is an eigenvector of CX w/ eigenvalue λ1, must
be largest eigenvalue

• Thus, can compute eigendecomposition of CX, order eigenvectors
by their eigenvalues

• In practice, better done with singular-value decomposition

PCA example: galaxy
spectra in SDSS

Ivezic et al. (2014)

PCA in practice
• Because you are rotating, technically only applies

when all dimensions have the same units

• If you want to apply PCA to dimensions with different
units, need to divide out the units: subtract the mean
and divide by typical value or ‘whiten’ by subtracting
the mean and dividing by the data’s standard deviation

• If data have errors, need to account for this; if they are
different for different dimensions and/or data points,
need to solve for PCA components iteratively

Dimensionality reduction
with PCA

• PCA decomposition tells you which directions explain
most of the variation in the data

• Can cut at a certain number K <= D of PCA components
that explain X% of the variance (K=D explains 100%)

• If K << D, can significantly reduce the dimensionality of
the data

• Where to cut? Compare to expected noise level, or
decide how much variance you want to explain, search
for features in the (explained-variance) vs. K plot

PCA example: galaxy
spectra in SDSS

Ivezic et al. (2014)

PCA example: galaxy
spectra in SDSS

Independent Component
Analysis (ICA)

• Generalization of PCA

• Find directions in high-dimensional space, such that
each direction’s data distribution is statistically
independent:  
 
f(xp,yq) = f(xp) f(yq) for some p,q

• p=q=1: PCA (requires uncorrelated data)

• In general: maximize non-Gaussianity of individual
distributions f(x): kurtosis, negative entropy

ICA example:
galaxy spectra in

SDSS

Ivezic et al. (2014)

Other dimensionality
reduction techniques

• Non-negative matrix factorization: similar to PCA/
ICA, but components are always positive

• Manifold learning, e.g., locally-linear embedding:
can deal with complex lower-dimensional  
objects in higher-dimensional space

• t-SNE: t-distributed stochastic neighbor
embedding: models high-dimensional space as 2D
in such a way that points close in high-D are close
in 2D and points far are far in both

Regression

Regression problems
• Have data set (x,y) —> y(x)?

• Issues:
• y has errors with known Gaussian distribution, can be different
• y has errors with known non-Gaussian distribution
• y has unknown errors
• x and y have known Gaussian errors
• x and y have unknown errors

• Model complexity:
• Linear —> relatively easy
• Non-linear —> hard!

Regression: straight line
• Model is y = mx +b

• Maximizing likelihood equivalent to solving:  
 
Y = A X, with YT = [y0,y1,…,yN-1], XT = [m,b],  
 A = [[x0,1],[x1,1],…,[xN-1,1]]

• No errors: X = [ATA]-1ATY

• With errors: C = [[σ20,0,0,…,0],[0,σ21,0,…,0],…,[0,…,0,σ2N-1]]:
X = [ATC-1A]-1ATC-1Y

• Prediction for xnew: [xnew,1] x [[ATC-1A]-1ATC-1Y]

Regression: basis function
fitting

• Higher-order polynomials: y = c x2 + m x + b

• Proceed the same way, only thing different is design matrix A

• Y = A X, with YT = [y0,y1,…,yN-1], XT = [c,m,b],  
 A = [[x2

0,x0,1],[x2
1,x1,1],…,[x2

N-1,xN-1,1]]

• No errors: X = [ATA]-1ATY

• With errors: C = [[σ2
0,0,0,…,0],[0,σ2

1,0,…,0],…,[0,…,0,σ2
N-1]]:

X = [ATC-1A]-1ATC-1Y

Regression: basis functions
• Can use many more basis functions and approach non-parametric

regression

• E.g., Gaussian, piecewise-polynomial

• # of parameters grows —> need to penalize complexity

• Maximize: log L + regularization term

• regularization term:  
 
λ ∫dx|y’’(x)|2 —> spline  
λ |XTX| —> ridge regression  
λ |X| —> LASSO regression (prefers X = 0)

• Need to set λ —> cross-validation etc.

Ivezic et al. (2014)

Basis function regression
example

Ivezic et al. (2014)

Gaussian Processes (GP)
• Gaussian process is an example of an infinite-dimensional

model, sets a prior on functions

• GP: joint distribution of any [y(x0),y(x1),..,y(xN-1)] is
Gaussian

• GP: characterized by mean function m(x) and covariance
function Cov(x1,x2) that specify this joint distribution

• Mean and covariance function characterize by
hyperparameters

• Magic of Gaussians make everything easy to deal with

• Need to choose Cov(x1,x2),
popular choice is  
σ2 x exp(-(x1-x2)2/[2h2]) with
parameters σ and h

• Can then draw functions
from this Gaussian

Gaussian Processes (GP)

Ivezic et al. (2014)

• If you have some observed data (xi,yi) with error
bars, can write down the joint distribution of
[x0,new,x1,new,…,xK-1,new,xi0,xi1,…,x1N-1] 
and condition on x0,new,x1,new,…,xK-1,new

• This gives the posterior distribution over functions,
which is still Gaussian

Gaussian Processes (GP)

GP example

Rasmussen & Williams (2006)

GP math
• Joint distribution

• Conditioning on observed points f

Rasmussen & Williams (2006)

GP algorithm

Rasmussen & Williams (2006)

Hyper-
parameters

Another GP example

Ivezic et al. (2014)

Classification

Classification
• Example of supervised learning

• Have training data set of attributes xi with labels for
K classes

• Learn how to assign labels based on attributes to
classify unknown sources

• Example: (u,g,r,i,z) —> (quasar,star,galaxy)

Classification metrics

• Purity: fraction of objects assigned to class k that
truly are part of class k

• Completeness: fraction of true class-k objects that
is assigned to class k

• Difficult to maximize both!

Classification using density
estimation

• Can estimate densities for each class ρk(x) =
p(xnew|class k) using density-estimation techniques
discussed earlier

• Assign new classes using Bayes theorem:  
 
 p(xnew|class m) p(class m)  
p(class m|xnew) = ————————————— 
 𝛴k p(xnew|class k) p(class k)

• Allows for full power of density estimation

Example with Gaussian
mixtures

Ivezic et al. (2014)

Non-parametric classification:
k-nearest neighbor

• Simple: Look at the k nearest neighbors in the
training set —> assign class based on consensus

• Requires:
• Distance function
• Consensus building: can assign weights to

neighbors based on, e.g., the distance

• Expensive for large training sets (always need to
consider all data)

Support Vector Machines
• Find hyperplane in x that

maximizes the distance between
two classes

• That hyperplane is entirely
described by the points that lie on
it —> support vectors

• Labels y={-1,1}, hyperplane: 
minimize |m| subject to yi(b+mxi)
>= 1 for all i

• Can add loss function proportional
to distance if data cannot be
separated —> hyperparameter

Ivezic et al. (2014)

SVM example

Ivezic et al. (2014)

SVM: kernel trick
• Hyperplane: linear

• Can make boundary non-linear using the kernel
trick

• Requires the dual representation of the optimization
problem for SVM…

• Replace all dot products with K(x,x’) with K a kernel
(e.g., Gaussian)

SVM kernel trick example

Ivezic et al. (2014)

