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Today: briet intro to
machine learning tools



Macnine learning

e Techniques to learn patterns in the data in flexible way; not parameter
iInference

* Malin tasks:
* Density estimation and clustering: What is the distribution of the data”

 Dimensionality reduction: What are the most important dimensions in
the data”?

e Regression: Learn to predict y(x) from (x,y) training data

e Classification: Learn to predict classification labels L from (x,L) training
data

e Distinction between supervised and unsupervised learning



Density estimation

Have data points {xi} —> what is the density p(x)?

Saw this in bootstrap: p(x) = X &(x-x;)

Parametric: fit p(x) with some 1
parameters 6, e.qg., p(x) = N(x

‘unctional form with

mean,variance) —>

use parameter-inference techniques from L2

Non-parametric: Similar to sum-of-delta functions, but
replace delta function with a different function —>
build p(x) directly from the data without parameters



Simple parametric density
estimation

For example, model p(x) as Gaussian with mean m and variance
V

Data {xi}, independently drawn w/o error
Likelihood for individual x;: Li= N(xj|m, v)
Posterior PDF = Prod; L

Optimizing this gives

m = mean(Xx;),

v = (N-1)/N variance(x;)

No closed-form when data points have individual uncertainties o



Simple non-parametric
density estimation: histogram

* A histogram is a form of density estimation

 Non-parametric because histogram per se does not
have explicit parameters

 But have hyperparameters: location and width of bins
that need to be chosen; hyperparameters don't directly
set the density, but constrain, e.g., it smoothness

e Widely used, but often doesn’t give a good
representation of the data, non-smooth, and difficult in
higher dimensions



Histogram example
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Same data, different binning!

lvezic et al. (2014)



Kernel density estimation
(KDE)

 Remember from bootstrap: p(x) = X 5(x-x;)
* Replace &(.) with a

kernel K(.) with width h
X-x; with distance function d(x,x;):

p(x) = ZiK(d[x,xi]/hi)

e K(.) could be: tophat function, similar to histogram,
a Gaussian, or ...



KDE example
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lvezic et al. (2014)



KDE: kKernels

e Kernels: symmetric functions around zero, positive
everywhere, integrate to 1

- Uniform

- Triangle

- Epanechnikov
-Quartic

— Triweight

Gaussian

Cosine

 (Gaussian convenient,
but has infinite support:
need to always use all  °8f
points to get a density
evaluation

1.0 F

 Epanechnikov optimal .|
In that it gives the
smallest expected o1

mean-squared-error: e e
K(r = d(x,xi)) = 3(1-r3)/4, r <=1 rian Amberg/Wikipedia

1 | 1 1 1
-1.0 -0.5 0.0 0.5 1.0



KDE: bandwidtn

Need to set width h of the kernel, this is a hyperparameter

Some rules-of-thumb based on Gaussian data: Scott’s
rule: h = N-"dm+4) Tif data scaled to have unit variance]
Silverman’s rule: h = [N*(dim+2)/4] /dm+4) [same scaling]

Other way: leave-one-out-cross-validation (see last
lecture)

Or minimize Mean-Integrated-Square-Error

Can also have variable h that depends on the local
density:

n(x) =K/ [p()]"em,

higher density —> smaller kernel width



KDE applications

* Easy-to-use and standard tool when you need to estimate
a density

« Examples:
 PDF from MCMC samples
* You have run a bunch of simulations that give points in
some space (e.g., stellar tracks with MESA) and want to

estimate a density covering the whole space

e But difficult to apply when data points have errors and
want to deconvolve



Some examples...
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Parametric density estimation with
many parameters: Gaussian mixtures

e Single Gaussian: strongly constrained parametric model;
KDE w/ Gaussian kernel: very flexible, but as many
components as data points

e (Gaussian Mixture Model (GMM): in between: model
density p(x) as sum of K Gaussians, K< N

 Parameters: amplitudes, means, and variances of all
Gaussians

* P(X) = Xk ax N(X|mk,Vk)

e Could optimize likelihood for all parameters....



GMM and EM

When K becomes large, many parameters —> high-dimensional
parameter space to search for optimal solution

Expectation-Maximization algorithm: General algorithm to
optimize these kinds of problems

Add a gi assignment variable to each data point: data point |
drawn from component k where gix = 1 (all other gi= 0)

It we knew all g;, then optimizing would be easy:

dk = 1/N X Qik
meanx = mean of those x; with qi = 1
varianceyx = variance of those x; with gix = 1



GMM and EM

* Expectation-maximization: Can show that following two
steps always increase likelihood

E(xpectation):
gik = akN(xijmeang,variancey)/ [2) aN(xj|mean,variance))]

M(aximization):

ak = 1/N X gi

meank = X Qik Xi/ 2 Qik

variancex = Xi gk (xi-meank)?/ X Qix

 Always leads to at least a local maximum, convergence
very fast in general



(Gaussian mixture model

* Parametric, but when Kis large almost as tlexible
as a non-parametric model

* Need to set K, the single hyper-parameter
* Use cross-validation or AIC/BIC
* |t you are simply trying to get a good representation

of a density, number K doesn't matter as long as it's
big enough



Example
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Be careful when interpreting components!!



(Gaussian mixtures with errors:
extreme deconvolution (XD)

e |f data have individual uncertainties
(heteroskedastic uncertainties), can still fit a
Gaussian mixture model quickly

* Jrick is to include more hidden variables like the Qix:
true values X if point i was drawn from component k

 Adds a few simple update steps (Bovy et al. 2011)

* Implemented in astroML, fast C version at github/
jobovy/extreme-deconvolution




XD example

lvezic et al. (2014)
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Clustering

 Example of unsupervised learning. given set of
data x;, what are the clusters / classes that this data

can be divided into?

 Could use a density estimate and find peaks or
clearly separated points

* Simplest stand-by algorithm: K-means



K means

Fix number of clusters K
Optimize 2w 2iink |xi—mk|2
Like Gaussian mixture model, but with hard assignments

Optimization algorithm:

1. Start with set of {my}

2. Assign each x; to its nearest my

3. Compute new mg as the mean of all of the x;
assigned to cluster k

4. Go back to 2.

Could also use medians: K medians



K means example
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lvezic et al. (2014)



Clustering with Gaussian
mixtures

e Can work much better
because background
can be fit out
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Procedural clustering

Gaussian mixture and K-means have the advantage that they
optimize an objective function (the likelihood), so the outcome
should not depend on how you found the optimal solution

Procedural clustering defines clusters in a procedural way

Hierarchical clustering:

1. Start with N clusters, N=#data

2. Join two clusters to form N-1 clusters
3. Repeat

Join based on: minimum distance between clusters (minimum
spanning tree) —> extended clusters, maximum distance between
clusters —> compact clusters, friends-of-friends is further example



Dimensionality reduction:
PCA and ICA



Dimensionality reduction

* Astronomical observations are by their nature high-
dimensional

Need to focus on most important dimensions in the
data

* [hose dimensions are not necessarily aligned with
observed axes, e.9., pixels in a spectrum

g | 1 1T 1T

lvezic et al. (2014)




Principal Component
Analysis (PCA)

vezic et al. (2014)



Principal Component
Analysis (PCA)

Data in D-dimensional space
Find direction with highest variance
Rotate such that that direction Is X1

In the remaining (D-1)-dimensional space do the
same: find direction with highest variance, rotate
that to xo

and SO on



PCA using eigenvectors

e Can determine PCA components using eigendecomposition of the
data’s variance tensor Cy = X' X/[N-1]

e First component ry should minimize r1Ter1 and |rqy| = 1: introduce
Lagrange multiplier A

Minimize r1' Cyry - ?\1(r1Tr1—1)

Cxrq - Ary = 0 —> rq is an eigenvector of Cx w/ eigenvalue Ay, must
be largest eigenvalue

Thus, can compute eigendecomposition of Cy, order eigenvectors
by their eigenvalues

In practice, better done with singular-value decomposition



e PCA €Xample: galaxy
spectra in SDSS
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PCA In practice

 Because you are rotating, technically only applies
when all dimensions have the same units

* |t you want to apply PCA to dimensions with different
units, need to divide out the units: subtract the mean

and divide by typical value or ‘whiten’ by subtracting
the mean and dividing by the data’s standard deviation

* |f data have errors, need to account for this; if they are
different for different dimensions and/or data points,
need to solve for PCA components iteratively



Dimensionality reduction
with PCA

PCA decomposition tells you which directions explain
most of the variation in the data

Can cut at a certain number K <= D of PCA components
that explain X% of the variance (K=D explains 100%)

It K << D, can signiticantly reduce the dimensionality of
the data

Where to cut? Compare to expected noise level, or
decide how much variance you want to explain, search
for features in the (explained-variance) vs. K plot



PCA components
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Independent Component
Analysis (ICA)

Generalization of PCA
Find directions in high-dimensional space, such that

each direction’s data distribution Is statistically
iIndependent:

f(xP,yd) = f(xP) f(y9) for some p,q
p=qg=1: PCA (requires uncorrelated data)

In general: maximize non-Gaussianity of individual
distributions f(x): kurtosis, negative entropy
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Other dimensionality
reduction technigues

 Non-negative matrix factorization: similar to PCA/
|ICA, but components are always positive

 Manifold learning, e.q., locally-linear embedding:
can deal with complex lower-dimensional =g
objects in higher-dimensional space *

'&ﬁf {om
o

e t-SNE: t-distributed stochastic neighbor
embedding: models high-dimensional space as 2D
INn such a way that points close in high-D are close
in 2D and points far are tar in both




Regression



Regression problems

 Have data set (x,y) —> y(x)?

* |ssues:
* vy has errors with known Gaussian distribution, can be different
e v has errors with known non-Gaussian distribution

* v has unknown errors
* x and y have known Gaussian errors
* X and y have unknown errors

* Model complexity:
 Linear —> relatively easy
* Non-linear —> hard!



Regression: straignt line

Model isy = mx +b
Maximizing likelihood equivalent to solving:

Y =AX, withY" = [yo,v1,...,yn-1], X' = [m,b],
A = [[Xo,1],[x1, 1], [XN-1,1]]

No errors: X = [ATA]TATY

With errors: C = [[0%,0,0,...,0],[0,0%4,0,...,0],...,[0,...,0,0°n-1]1:
X = [ATCTATATC 1Y

Prediction for Xnew: [Xnew, 1] X [[ATCTATTATC Y]
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Regression: basis function
fitting

Higher-order polynomials: y = ¢ x* + m x + b

Proceed the same way, only thing different is design matrix A

Y =AX, with YT =
A = [[X20.x0, 11X

No errors: X = [ATA]TATY

With errors: C = [[0%,0,0,...,0],[0,06%4,0,...,0],...,[0,...,0,0%n-1]]:
X = [ATCTATATCY



Regression: basis functions

* Can use many more basis functions and approach non-parametric
regression

 E.g., Gaussian, piecewise-polynomial
* # of parameters grows —> need to penalize complexity
* Maximize: log L + regularization term
* regularization term:
A\ Jdx]y”(x)[¢ —> spline
\ [X"X| —> ridge regression

A |[X| —> LASSO regression (prefers X = 0)

e Need to set A —> cross-validation etc.
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Gaussian Processes (GP)

e (Gaussian process is an example of an infinite-dimensional
model, sets a prior on functions

e GP: joint distribution of any [y(Xo),V(X1),..,y(Xn-1)] 1S
Gaussian

 GP: characterized by mean function m(x) and covariance
function Cov(x1,x2) that specify this joint distribution

 Mean and covariance tfunction characterize by
hyperparameters

 Magic of Gaussians make everything easy to deal with



Gaussian Processes (GP)

e Need to choose Cov(x1,X2),
popular choice is
02 X exp(-(x1-x2)2/[2h2]) with
parameters o and h

e Can then draw functions
from this Gaussian

; | | | |
U 2 : b N 10

lvezic et al. (2014)



Gaussian Processes (GP)

* |f you have some observed data (xi,yi) with error
bars, can write down the joint distribution of

[XO,nevv,X1 new, . . ., XK-1,new, Xi0, Xit, . . . , X1 N—1]
and condition on X0,new,X1,new, . .., XK-1,new

* This gives the posterior distribution over functions,
which is still Gaussian



output, f(x)

GP example

output, f(x)

-5 0 5 -5 0 5
input, X input, X
(a), prior (b), posterior

Rasmussen & Williams (2006)



GP math

e Joint distribution

CK(X,X)+02I K(X,X,)
-~ N<O’ K(X,.,X) K(X., X,) )

y
_f*_

» Conditioning on observed points f
f.|X,y, X« ~ N(£f, cov(f.)), where
f. £ E[f|X,y,X.] = K(X.,X)[K(X,X)+o.1]""
cov(f,) = K (X, X.) — K(X., X)[K(X,X) +021] "K(X, X.).

Rasmussen & Williams (2006)



GP algorithm

input: X (inputs), y (targets), k& (covariance function), o (noise level),
X, (test input)
. L := cholesky(K + 021)

7T
| }} ..—:IIL(T\‘([L\y) } predictive mean eq. (2.25)
| %[F]le]: (%0, %) — VTV } predictive variance eq. (2.26)
log p(y|X) := —%yTa — 2 ;log Ly — 5 log2m eq. (2.30)

. return: f, (mean), V[f,| (variance), log p(y|X) (log marginal likelihood)

~u - —— - . - - - - - - - - - -~ ———

Rasmussen & Williams (2006)




Hyper-
parameters

5 0 5
input, x
(a), £=1
3 3
2.
1 s
>
5 0
o
3 -1
-2
_3-
-5 0 5 -5 0 5
input, x input, x



Another GP example
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Classification



Classification

Example of supervised learning

Have training data set of attributes x; with labels for
K classes

Learn how to assign labels based on attributes to
classify unknown sources

Example: (u,g,r,1,z) —> (quasar,star,galaxy)



Classification metrics

e Purity: fraction of objects assigned to class k that
truly are part of class k

 Completeness: fraction of true class-k objects that
IS assigned to class k

e Difficult to maximize both!



Classification using density
estimation

» Can estimate densities for each class pk(x) =
D(xnew|Class k) using density-estimation techniques
discussed earlier

* Assign new classes using Bayes theorem:

D(Xnew|Class M) p(class m)

p(class M|xnew) =
2« p(xnew|Class k) p(class k)

* Allows for full power of density estimation
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Non-parametric classification:
K-nearest neighbor

 Simple: Look at the k nearest neighbors in the
training set —> assign class based on consensus

* Requires:
e Distance function

e Consensus building: can assign weights to
neighbors based on, e.qg., the distance

* Expensive for large training sets (always need to
consider all data)



Support Vector Machines

 Find hyperplane in x that
maximizes the distance between

two classes

e That hyperplane is entirely
described by the points that lie on
It —> support vectors

o Labels y={-1,1}, hyperplane:
minimize |m| subject to y;j(b+mx;)
>= 1 for all i

e Can add loss function proportional
to distance it data cannot be
separated —> hyperparameter

lvezic et al. (2014)



SVM example
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SVM: kernel trick

Hyperplane: linear

Can make boundary non-linear using the kernel
trick

Requires the dual representation of the optimization
oroblem for SVM...

Replace all dot products with K(x,x') with K a kernel
(e.g., Gaussian)



SVM kernel trick example
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