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(you would not believe the amount of 
code and statistics that went into creating 
the mock data in the previous figures…)



Object of this mini-course
• No: to teach you how to fit a straight line to data… 

• No: to go through an exhaustive list of all possible 
applications of statistical methods and machine-
learning techniques in astrophysics 

• Yes: to introduce you to important basic concepts 
and principles to use when applying statistics in astro 

• Yes: to teach you some basic tools that you will use 
over and over again



Overview of topics
- Probability theory 
- Common probability distributions 
- Maximum-likelihood fitting, penalized likelihood 
- Bayesian inference, frequentist analysis 
- Sampling from probability distributions; Markov Chain Monte 
Carlo 
- Bootstrap and jackknife 
- goodness-of-fit; cross-validation 
- Robust statistics, outliers 
- Monte Carlo techniques 
- Some tools from machine learning: KDE, K-means, Gaussian-
mixtures, PCA, Gaussian processes, support vector machines



Classes
• Course taught in 5 sessions: 

• Feb 25 (today, 1hr20min): Introduction, generalities, probability 
calculus, common distributions 

• Mar 10 (2 weeks from now, 2hr): likelihood, maximum likelihood, 
Bayesian inference, frequentist analysis 

• Mar 17 (2hr): Sampling, MCMC, marginalization etc., non-parametric 
methods (bootstrap, jackknife) 

• Mar 24 (1hr20min): Goodness-of-fit, cross-validation, Monte-Carlo 
techniques, outliers, robust statistics 

• April 7 (1hr20min, note weeklong gap): Topics in machine learning: 
regression, classification, classical ML algorithms



Marking
• For those taking this for credit (1/3 course) 

• 2 assignments, one after third lecture, one after last 
lecture 

• Format TBD, but likely computer exercises 
(Python?) 

• Those of you not taking the course for credit are 
welcome to do the assignments, but no guarantee 
that they will be marked



Textbook
Statistics, Data Mining, and 
Machine Learning in 
Astronomy 

Zeljko Ivezic, Andrew 
Connolly, Jacob VanderPlas, 
and Alexander Gray 

Princeton University Press 

2014



What are we doing here?
• (big) data → astrophysical knowledge 

• Data analysis: three steps 

• Data exploration / model building: what model are 
we fitting to the data 

• Inference: how do we fit the model to the data? 

• Model validation: Is the model a good fit? How 
should we adjust the model? What new data should 
we get to test the model further



Statistics, inference, 
machine learning, …

• Statistics: broad definition “Statistics is the study of the collection, analysis, 
interpretation, presentation, and organization of data” (Wikipedia) 

• Statistics: narrow definition: set of mathematical tools and theorems about 
distribution of random variables 

• Inference: “Inference may be defined as the non-logical, but rational means, 
through observation of patterns of facts, to indirectly see new meanings and 
contexts for understanding.” … “Statistical inference uses mathematics to 
draw conclusions in the presence of uncertainty.” (Wikipedia) 

• Machine learning: “Field of study that gives computers the ability to learn 
without being explicitly programmed” (Arthur Samuel). Much inapplicable in 
typical astro setting and typically useless for inference, but useful set of 
tools for model building and validation.



Probability calculus



Probability calculus
• At its core, probability theory has a firm 

mathematical basis that is worth keeping in mind 

• Rules of probability can be rigorously derived; not 
much use in most applications, but basics 
important to keep in mind 

• Important to not sin against: a) units, b) laws of 
conditional probability



Probability calculus: basics
• Can have probability of discrete variables and continuous 

variables; follow slightly different rules, so good to use different 
symbols to keep track 

• P(ai): probability of discrete set of outcomes {ai} 

• p(a): probability of continuous set of outcomes a 

• Probabilities normally normalized such that total probability of 
anything happening is 1 

• 𝛴i P(ai) = 1 

• ∫da p(a) = 1



Probability calculus: basics

• 𝛴i P(ai) = 1 

• ∫da p(a) = 1 

• P(ai) and p(a) have units, do they have the same 
units?



Probability calculus: basics
• 𝛴i P(ai) = 1 

• ∫da p(a) = 1 

• P(ai) dimensionless (number) 

• Units of p(a): 1/a; required to make ∫da p(a) = 1 

• Can P(ai) be smaller than 1? 

• Can P(ai) ever be larger than 1? 

• Can p(a) ever be larger than 1?



• Often very useful to keep in mind that p(a) has units 
of 1/a 

• Example: transformations of p(a) 

• Suppose b = f(a); what is p(b)?

Probability calculus: basics



• Often very useful to keep in mind that p(a) has units of 1/a 

• Example: transformations of p(a) 

• Suppose b = f(a); what is p(b)? 

• Get p(b) from conservation of dimensionless probability 

• Probability (capital P!) of a in [a,a+da]: pa(a) da 

• Probability (capital P!) of b=f(a) in [b,b+db]: pb(b) db 

• Dimensionless Probability should be the same:  
pa(a) da = pb(b) db 

• pb(b) = pa(a) |da/db| = pa(f
-1[b]) x |df-1[b]/db|

Probability calculus: basics



• pb(b) = pa(a) |da/db| = pa(f-1[b]) x |df-1[b]/db| 

• Does this make sense in terms of units?

Probability calculus: basics



Probability calculus: rules 
of conditional probability



Rules of probability
• P(A∪B|C) = P(A|C)+P(B|C)-P(A∩B|C) 

• 11/13 = 8/13 + 6/13 - 3/13

C A B



• P(A∩B|C) = P(A|B∩C) x P(B|C) 

• 3 / 13 = 3 / 6 x 6 / 13

C
A B

Rules of probability



Rules of probability
• P(A|B∩C) = P(B|A∩C)xP(A|C)/P(B|C) 

• 3 / 6 = 3 / 8 x 8 / 13 / (6 / 13)

C
A B



Rules of conditional 
probability

• P(A or B|C) = P(A|C)+P(B|C)-P(A,B|C) 

• p(A,B|C) = p(A|B,C) x p(B|C) 

• p(A|B,C) = p(B|A,C)xp(A|C)/p(B|C) 

• Do these make sense in terms of units?



Rules of conditional 
probability

• Don’t do things like 

• P(A,B|C) = P(A|B,C) x P(B|A,C) 

• P(A|B,C) = P(A|B) x P(A|C) 

• Might seem obvious now, but easy to get fooled 
when have (A,B,C,D,E,F,…) and complex 
conditional relations between them 

• Published literature has examples of these 
mistakes……



Characterizing probability 
distributions

• p(x) 

• Mean, expectation value: μ = ∫dx p(x)x 

• Variance: V = ∫dx p(x)(x-μ)2 

• Standard deviation: σ = √V 

• Skewness: S = ∫dx p(x)([x-μ]/σ)3 

• Kurtosis: K = ∫dx p(x)([x-μ]/σ)4 

• Excess kurtosis: K-3; often default!



Ivezic et al. (2014)



• p(x) 

• Mode: argmax p(x), dp/dx = 0 

• Quantiles: xq such that 

• Median: x0.5 

• Mean, median, mode: think about how these transform 
under y=f(x) 

• Median, quantiles often best way to characterize p(x), but 
issues when multiple peaks etc.

Characterizing probability 
distributions

Z
xq

�1
dx p(x) = q



• Cumulative distribution function (CDF): CDF(y) = 
P(x <= y) [note capital P!] 

• CDF(x) =  

• CDF(∞)=? 

• P(a < x <= b)= CDF(b)-CDF(a)

Characterizing probability 
distributions

Z
x

dy p(y)



Common probability 
distributions and their 

properties



Uniform distribution
• Simplest one! 

• p(x) = constant for a < x < b 

• constant = 1/ (b-a) 

• Mean? 

• Variance= (a-b)2/12 

• Random numbers from                                                               
uniform distribution basis                                                                 
of all                                                                                   
(pseudo)-randomness                                                                                            
on a computer

Ivezic et al. (2014)



Gaussian distribution
• Most common one? 

• Form: 

• Mean μ, standard deviation σ 

• Skewness=0, excess kurtosis=0 

• Worth remembering the pre-factor!
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Gaussian distribution

Ivezic et al. (2014)



• Convolution of a Gaussian with another Gaussian is 
again a Gaussian 

• Use  

• Then

Gaussian distribution
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• Cumulative distribution function:  

• P(σ < x-μ <= σ) = CDF(μ+σ)-CDF(μ+σ) = erf(1/√2)      
= 0.68268949213708585 

• P(2σ < x-μ <= 2σ) = CDF(μ+2σ)-CDF(μ+2σ) = erf(2/√2) 
= 0.95449973610364158 

• P(3σ < x-μ <= 3σ) = CDF(μ+3σ)-CDF(μ+3σ) = erf(3/√2) 
= 0.99730020393673979

Gaussian distribution

CDF(x) =
1
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Gaussian distribution
• Central limit theorem:  

• Have: arbitrary probability distribution p(x) with 
finite mean μ and variance σ2 

• Draw N samples xi from p(x), what is the 
distribution of m = 1/N 𝛴i xi? 

• p(m) = N(μ,σ2/N) as N →∞



Central limit theorem

Ivezic et al. (2014)



Bernoulli distribution
• Discrete Probability for X which has Probability p 

for being 1 and 1-p for being 0 (flipping coin) 

• P(X=1) = p    , P(X=0) = 1-p 

• Mean? p x 1 + (1-p) x 0 = p 

• Variance? p x (1-p)2 + (1-p) x (0-p)2 = (1-p) x (p[1-
p]+p2) = p(1-p)



Binomial distribution
• Probability distribution for outcome of repeated 

Bernoulli trials: Y = 𝛴i Xi 

• Number k of successes in N trials, each with 
Probability p of success 

• p(k|p,N) = N!/(k!(N-k)!) pk(1-p)N-k 

• Mean Np because of Bernoulli (easier than working out 
the combinatorics!) 

• Variance Np(1-p) because of Bernoulli



Poisson distribution
• Say you want the statistical distribution of the number of 

photons that comes from a source in 1 s, and you expect λ 
photons 

• Divide time interval into small dt such that each interval 
has either 0 or 1 photons, say dt=0.01s 

• Probability of seeing a photon in dt is then p=dt/(1 s) λ 

• Total number of photons is then Binomial trial with N =(1 s)/
dt and p=dt/(1 s) λ 

• When dt → 0, N →∞ and p → 0, but Np always λ



• Take Binomial distribution with N →∞ and Np = λ 

• p(k|p,N) = N!/(k!(N-k)!) pk(1-p)N-k =~ N!/(k!(N-k)!) λk/Nk (1-λ/N)N-k = 
λke-λ/k! 

• p(k|λ) = λke-λ/k! 

• Mean = ? 

• Variance = ? 

• Sum of Poisson distributed variables is again Poisson distributed 

• For large λ, Poisson well described by Gaussian with mean λ and 
variance λ (central limit theorem applied to λ chunks with mean 1 )

Poisson distribution



• Take Binomial distribution with N →∞ and Np = λ 

• p(k|p,N) = N!/(k!(N-k)!) pk(1-p)N-k =~ N!/(k!(N-k)!) λk/Nk (1-λ/N)N-k = 
λke-λ/k! 

• p(k|λ) = λke-λ/k! 

• Mean = λ 

• Variance = λ 

• Sum of Poisson distributed variables is again Poisson distributed 

• For large λ, Poisson well described by Gaussian with mean λ and 
variance λ (central limit theorem applied to λ chunks with mean 1 )

Poisson distribution



Poisson distribution

Ivezic et al. (2014)



Exponential distribution
• p(x|λ) = λ e-λx, λ >= 0 

• Waiting time x between events in Poisson process with rate λ 

• Mean: λ-1 

• Variance: λ-2 

• Laplace distribution: same, but for positive and negative x: p(x|
λ) = λ/2 e-λ|x-μ| 

• Weibull: generalization to where the rate is a power of time 

• Rayleigh: p(x|λ) ~ x exp(-x2/2/σ2), λ >= 0



Laplace distribution

Ivezic et al. (2014)



Chi-squared distribution
• Distribution of sum of squares of k independent standard 

normal variables (those from N(x|0,1)) 

• Form: 

• Mean: k 

• Variance: 2k 

• Basis for chi-squared-per-degree-of-freedom goodness-of-
fit 

• Central limit theorem: for k →∞, p(x|k) → N(x|k,2k)

p(x|k) = 1
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Chi-squared distribution

Ivezic et al. (2014)



Higher-dimensional 
distributions

• Many fewer important ones! 

• Multivariate Gaussian: 

• Wishart distribution

N (~x|~µ,V) =
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Sampling 1D probability 
distributions

• Random number generator returns (pseudo) random 
integer between 0 and 2w-1 

• How to generate random variables from other distributions 

• Uniform: convert random integer to interval [0,1] or other 

• Gaussian: u,v uniform on [0,1] → √(-2ln[u]) x cos(2πv) is 
random draw from N(x|0,1) 

• Most other distributions don’t have simple ways to 
generate random samples



• Inverse-cumulative-distribution method:  
p(x) → CDF(x) → CDF-1(x) 

• Sample u from uniform on [0,1], compute v=CDF-1(u), v is sample 
from p(x) 

• Rejection sampling:  
if p(x) < Mg(x) for all x and M > 1, and can sample easily from g(x) 

• Sample v from g(x) and u from Uniform(0,1)  
if u < p(v)/g(v)/M: return v  
else: try again 

• Rejection sampling can work in >1D, but typically difficult to find 
appropriate M and g(x)

Sampling 1D probability 
distributions


