
Abstract
Chemo-dynamics is an integral component of stellar 
archeology, granting us the opportunity to trace the evolution of 
our home galaxy. While the Gaia mission supplies the radial 
velocities, parallaxes, proper motions, and positions of almost 
2 billion stars1, we still lack high-resolution abundances for 
large populations of stars. To remedy this, our project’s goal is 
to derive stellar abundances from spectra collected by the Dark 
Energy Spectroscopic Instrument (DESI), which has mapped 
more than 6 million stars2, using a neural network trained with 
Apache Point Observatory Galactic Evolution Experiment 
(APOGEE)3,4 targets from a DESI and APOGEE cross match. 
The predicted metallicities from our network were notably 
more accurate with respect to APOGEE than metallicities 
given by DESI’s stellar parameters (SP) pipeline.

Data
The data utilized in our neural network training was obtained 
by cross matching internal DESI data with APOGEE Data 
Release 175, 6. We then removed targets with signal to noise 
ratios less than 50, masked abundance errors, etc. Note that 
not all data from DESI’s most recent data release has been 
process by the SP pipeline. The fluxes were continuum 
normalized, with unphysically big fluxes masked out; the final 
data set size is 8384. 
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Fig. 1 log(g) vs Teff of cross-matched targets colored by metallicity

We defined a fully connected neural network with 4 hidden 
layers and a custom c2 loss function (Eq. 1) using PyTorch8. 

The purpose of a c2 loss function is to allow our network to 
favor targets with smaller uncertainties during training.

Results
After 200 epochs of training, we obtained a best c2 loss of 
12.40 on the test set, which implies our residuals are around 
3.5 times the measurement error from APOGEE. This 
demonstrates the intrinsic precision limitations of DESI, 
something our network cannot overcome. 

Future Work
• Expand network to predict more stellar abundances 
• Run network over all available DESI spectra
• Generate errors with abundance predictions 
• Generate baseline predictions using APOGEE abundances
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Eq. 1  

Fig. 4 [Mg/Fe] vs [Fe/H] scatter of neural network predictions

Fig. 3 2D residuals histograms of DESI radial velocity pipeline (top) and 
neural network predictions (bottom)
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Fig. 2 Schematic of methods
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