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|. Context

Globular cluster mass loss provides insight into high-redshift
star and galaxy formation

lll. Methods

We train a neural network to intake a tidal tensor, along with
other parameters, and predict the expected mass loss

Globular clusters (GCs) are large, spherical, dense stellar systems that formed Neural networks use

with their host galaxy >10Gyr ago. Their mass and structure are altered by the hidden layers and

host galaxy as they evolve. Studying GCs gives us clues about the formation and —> neurons to emulate

evolution of stars and galaxies which is difficult to observe directly. >

_, ' . " how humans learn —
[l. Motivations

reinforcement learning

through trial and error.

A tidal tensor is a way of characterizing the

GC mass loss is computationally expensive and time-consuming

to model with traditional simulations, limiting depth of study

The gravitational field tidally strips stars from a GC, with
tidal heating from substructure accelerating the process.
However, this is difficult to study with direct N-body or
large-scale cosmological simulations. Deep neural
networks (DNNs) can approximate any function and have
constant computational burden after training [1], making

them ideal for predicting GC evolution.

strength of the tidal field at a given location in
the galaxy [2]. We train a DNN to intake the
maximum eigenvalue of the tidal tensor

(A

(m.), and rate of change of the tidal tensor

..), duration of shock (dt), current mass
(%) to predict the expected mass loss (dm).

Full evolutionary tracks and dissolution times

can be obtained from the full tidal histories of

a given cluster.

Modelling Stages

S

Step 1: Univariate model,

Step 2: Multivariate model,

Step 3: N-body data: >200

clusters
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Neural nets:can predict
globular cluster evolution

~400 times-faster than
traditional methods

V. Results
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