

Understanding the impact of Bayesian inference on ultra-light axion limits lan Chow¹, Keir Rogers^{1, 2}

¹Department of Astronomy and Astrophysics, University of Toronto, ²Dunlap Institute for Astronomy and Astrophysics

What are ultra-light axions?

• Axions are theoretical elementary particles that are a well-motivated dark matter candidate • Ultra-light axions (ULAs) have masses ranging from 10^{-33} to 10^{-20} eV

- Behave either like cold dark matter or dark energy depending on their mass
- Distribution of ULAs in parameter space is a 4-D distribution depending on axion, dark matter and dark energy densities Ω_a , Ω_{DE} and Ω_c respectively, and axion mass m_a
- **Objective:** to develop a robust method of sampling the full 4-D ULA distribution
 - We use CMB data from the *Planck* telescope (below) to constrain axion distribution
 - Prior studies only sampled "slices" of the distribution (right) due to high cost of computing
 - CMB power spectra

• However, new ML methods using axionEmu software make emulating CMB power spectra *much* faster!

Planck CMB map

Hožek et al (2015). Previously estimated contours of the marginal distribution of ultra-light axions (ULAs) in the m_a - Ω_a plane.

What does the ULA distribution look like?

First design a **4-D test distribution** with qualitatively similar shape to the previously estimated axion distribution

- Evaluate the performance of two different sampling algorithms, Markov chain Monte Carlo (MCMC) and Nested Sampling, on a test distribution
- Both methods were **able to recover** the test 4-D distribution

Demonstrating how the 2-D marginal distribution of ULAs in the $\Omega_a - \Omega_{DE}$ plane changes as axion mass increases

 $m_a = 10^{-25} \text{ eV}$

Scan or **CLICK HERE** for animation

1, 2, and 3σ contours for the 2-D marginal posterior of the test function in the $m_a - \Omega_a$ plane (left) and for all 4 parameters (right), generated using MCMC sampling. Note that units for the test function are arbitrary.

How do we sample the true ULA distribution?

$\omega_{\rm cdm}$	0.10		Λ	
	0.05			
		5		

- Sample the parameter space with MCMC, using the **axionEmu** neural networks (right) to emulate the CMB power spectrum for a given set of axion parameters
 - Compare the axionEmu power spectrum to **Planck** data
- Input layer (cosmological parameters) Output layer Ω_{λ} 5 dense hidden layers

axionEmu neural networks (**10 seconds** per MCMC chain) can emulate CMB power spectra *much* faster than previous computational methods (**30 hours**)!

Aplanck

- Allows the **full distribution** to be sampled for the first time
 - Preliminary results (left) showing contours for \bullet the 2-D marginal posteriors of the ULA distribution, at fixed axion mass of 10^{-25} eV
 - **Next steps:** Sample over the full ULA distribution, letting axion mass vary as well

(CMB

power

spectrum)

Conclusions

- Using MCMC and nested sampling, we recover a test ULA distribution in 4-D parameter space
- Apply sampling methods to derive constraints on true ULA distribution from Planck CMB data in conjunction with new axionEmu neural network