
Accelerating CHIME/FRB
 Baseband Localization

Diana Korotun, Keith Vanderlinde
Dunlap Institute for Astronomy & Astrophysics, University of Toronto

Abstract
My research focuses on enhancing the efficiency of the localization stage within the baseband analysis pipeline of the CHIME
telescope. The primary objective is to reduce runtime, which is achieved by optimizing the MCMC (Markov Chain Monte Carlo)
segment of the pipeline. Through the implementation of parallelized code using the Multiprocessing package, the runtime of the
MCMC algorithm was notably reduced from 41.09 minutes to just 7.139 minutes when running with 8 cores.
This marks a 82.63% reduction in the execution time of the localization stage while maintaining data integrity.

Bibliography
[1] CHIME Experiment. (n.d.). Home. CHIME Experiment. https://chime-experiment.ca/en
[2] Foreman-Mackey, D. (n.d.). Parallelization — emcee v3.1.4 documentation. emcee. https://emcee.readthedocs.io/en/v3.1.4/tutorials/parallel/
[3] Petroff, E., Hessels, J. W. T., & Lorimer, D. R. (2021). Fast radio bursts at the dawn of the 2020s. arXiv preprint arXiv:2107.10113.

I would like to express my gratitude to the Dunlap Institute for giving me the opportunity to participate in the SURP program. Additionally, I extend my thanks to Keith
Vanderlinde, Daniele Michilli, Kaitlyn Shin, Shiny Brar, and the CHIME collaboration for their guidance and assistance throughout my journey so far.

Introduction
baseband analysis:

The process of CHIME detecting signals
and analyzing them offline is called
Baseband analysis. It consists of:

● Detecting radio signals and Identifying
strong and sudden signals

● Mapping their strength on the sky and
fitting with a 2d Gaussian function for
approximating location.

● Once the location is found, maximize
telescope sensitivity in that direction.

● providing data for further related
research

Initially, this process took hours, with
MCMC alone needing an hour. This
highlighted code inefficiencies and caused
delayed data analysis. Thus, I my work
was to speed up the pipeline.

Discussion

With, this refinement of the pipeline, the
baseband analysis is able to perform faster,
thus facilitating more efficient program
testing to produce better quality data for
further research with FRB, in related fields
such as polarization analysis, signal
morphology , and many more.

Moreover, faster running pipeline, means
faster detection of new FRBs. Which could
allow for potential collaboration with other
radio telescopes observing the sky, and the
opportunity to follow up on the detected
interesting events from new perspectives.

This in term would enable a better
understanding of FRB and, maybe, their
exact cause and origin.

Method:

To speed up processing, I added
parallelization to the MCMC algorithm.
This meant I made the data to process
concurrently instead of element by element
sequentially.
CHIME's pipeline uses the MCMC
function from the "emcee" package and its
EnsembleSampler() method. This method
takes the "pool" parameter, using the Pool
function from the "multiprocessing"
package. Where Pool is a function that
enables simultaneous task execution across
processes, This setup allows for a
customizable number of processes during
multiprocessing. In my research, I tested
different combinations of "number of
processes" and "number of cores" for the
best outcomes.[3]

Introduction
CHIME Telescope:

The CHIME telescope in British Columbia
started in September 2017. It consists of
four 20x100m parabolic cylinders which
detects radio signals. Its design creates daily
400-800MHz signal maps by scanning the
sky utilizing the Earth's rotation,
consequently, resulting in the observation of
numerous FRBs, surpassing earlier
efforts.[1]

Introduction - FRBs:

FRBs are short and intense radio
signals, with uncertain origins.
CHIME's unique design allows for
an effective FRB detection despite
their sporadic nature.[2] [1]

Results:
After implementing parallelization in
July 2023, I found that optimal
results occurred when the process
count matched the number of cores.
Balancing this is critical since too
few processes increase core
workload, while excessive processes
can lead to code stalls due to
cumulative time consumption.

