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Stellar Mass is Driving Factor Influence of AGN in EAGLE

False-colour images of #1 MWAs in EAGLE (left) and TNG-100 (right).
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Stale >|' 0 é/nsmlc;a sm?]u ?\;’\%}S N ” ' SMS . at redshift z = 0 to that at each previous determining MWAs, and that the MW is a red
\g%';;e_ls_eleff 1?)?? Mont © 4 S stef ar mgss( ’ N time step. This ratio generally decreases spiral; however, we also find that SM is far more
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distribution scaled by a Gaussian KDE pdf. " as MWAs at higher redshifts that do not restrictive in selecting MWAs?

end up as MWAs today. The snapshots (left, Additionally, galaxies selected as MWAs at higher
. g ) [ Vass contole top) also show this through the increased redshifts are likely not similar to the MW today,
i o . CAGLE ?5 “selection boxes/ellipses” that determine according to EAGLE. In this sense, the MW does
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