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At the edge of the Solar System lies the Kuiper Belt, a ring of leftover planetesimals

from the era of planet formation. Collisions between the Kuiper Belt Objects produce

dust grains, which absorb and re-radiate stellar radiation. The total amount of stellar

radiation so absorbed is perhaps one part in ten million. Analogous to this, Sun-like

stars at Sun-like ages commonly have dusty debris disks, which absorb and re-radiate

as much as one part in ten thousand of the stellar radiation. We set out to understand

this difference. In chapter 1, we outline the relevant observations and give a feel for

the relevant physics. In chapter 2, we turn to the extrasolar debris disks. Using disks

spanning a wide range of ages, we construct a pseudo-evolution sequence for extrasolar

debris disks. We apply a straightforward collision model to this sequence, and find that

the brightest disks are a hundred to a thousand times as massive as the Kuiper Belt,

which causes the difference in dust luminosity. Current theoretical models of planetesimal

growth predict very low efficiency in making large planetesimals, such that the Kuiper

Belt should be the typical outcome of Minimum Mass Solar Nebula type disks. These

models cannot produce the massive disks we find around other stars. We revisit these

models in chapter 3, to understand the origin of this low efficiency. We confirm that these

models, which begin with kilometer sized planetesimals, cannot produce the observed

extrasolar debris disks. Instead, we propose an alternate model where most mass begins

in centimeter sized grains, with some kilometer sized seed planetesimals. In this model,
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collisional cooling amongst the centimeter grains produces a new growth mode. We show

in chapter 4 that this can produce the Kuiper Belt from a belt not much more massive

than the Kuiper Belt today. We follow in chapter 5 by showing that this model can also

produce the massive planetesimal populations needed to produce extrasolar debris disks.
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Chapter 1

Introduction

1.1 The Solar Nebula

The planets of the solar system lie roughly in a plane. This remarkable fact seems posi-

tively pedestrian today, but this collective behaviour was the basis of the revolutionary

hypothesis that the planets formed out of a primordial circumsolar nebula (Kant, 1755;

Laplace, 1796), which is the beginning of modern planet formation theory. This trend

held true with the subsequent discovery of additional planets within the solar system

(Herschel & Watson (1781), Galle (1846)). This hypothesis was further strengthened by

the discovery of minor planets. The asteroids, the short-period comets, and the Kuiper

belt objects all lie roughly in the plane of the planets, with primarily prograde, planar

orbits. The small dust grains in the solar system also follow this general pattern. Today,

there is no significant challenge to the overall picture that the planets and minor planets

of the solar system formed from a circumsolar disk of material. Modern observations of

the solar system cover more than 100 000 asteroids (Juric et al., 2007), and more than

1000 Kuiper belt objects (Barucci et al., 2008). Compared to the total solar luminosity

L⊙, small dust grains within the solar system have a total luminosity ∼ 10−7L⊙ (Pyo

et al., 2010), which represents ∼ 1030 micron sized grains. We have just begun to mine
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the wealth of information contained within the minor planets.

The nebular hypothesis dictates that the protosolar nebula was composed of the

same materials as the Sun. However, the planets are heavily depleted in hydrogen and

helium relative to the solar composition. To infer the mass distribution of the primordial

nebula, the planet masses are augmented with hydrogen and helium to match the solar

abundances, and that mass is spread into annuli around their orbits. This construct

is called the Minimum Mass Solar Nebula (MMSN) (Weidenschilling, 1977b; Hayashi,

1981). The resulting nebula has a surface density Σ that depends on the distance r from

the Sun:

Σ (r) = Σ0r
− 3

2 , (1.1)

where Σ0 ∼ 1023 g cm−0.5 (or Σ ∼ 1700 g cm−2 at 1 AU). The uncertainty in this value

is of order unity, as a result of the uncertainties in the planetary compositions. Given

the uncertainties about where and how the planets formed, other parameterisations may

be preferred (e.g., Desch, 2007).

It must be noted that that the asteroid and Kuiper belts are substantially lower in

mass than is anticipated in the MMSN model (by & 10−3 in both cases). The low mass

of the asteroid belt is generally thought to be the result of dynamical clearing by the

giant planets (Liou & Malhotra, 1997; Petit et al., 2002; O’Brien et al., 2007). The same

is sometimes postulated for the Kuiper Belt region (Hahn & Malhotra, 1999; Charnoz &

Morbidelli, 2007; Booth et al., 2009); however, collisional grinding is sometimes suggested

as the source of the low mass today (Stern & Colwell, 1997; Kenyon & Bromley, 2004b;

Pan & Sari, 2005); and it has also been suggested that the MMSN disk was truncated

inside of 40 AU, and the low mass density is the result of an inefficient implantation

process (Levison & Morbidelli, 2003). The low mass of the Kuiper belt remains an open

problem.

The low density of the Kuiper belt is even more significantly truncated at ∼50 AU

(Dones, 1997; Trujillo & Brown, 2001). The surface density remains orders of magnitude
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below the MMSN to heliocentric distances of hundreds of AU (Bernstein et al., 2004;

Fuentes & Holman, 2008; Parker & Kavelaars, 2010b). Such a truncation must occur

at some distance; the integrated mass of the MMSN is divergent unless a truncation is

applied. It is likely (though far from certain) that the lower densities in the Kuiper belt

represent the primordial edge of the disk. Compared to the solar mass M⊕, a truncation

radius of 30 − 50 AU gives the MMSN a total mass of ∼ 10−2 M⊙.

1.2 The Kuiper Belt

1.2.1 Prediction and Discovery

Edgeworth (1949) noted that the nebular hypothesis suggested that a number of smaller

bodies should inhabit trans-neptunian space. The same analysis dismissed (134340)

Pluto as an “escaped satellite”, leaving astronomers in the lurch until the subsequent

discovery of (15760) 1992 QB1 (Jewitt & Luu, 1993), which ushered in a new era in outer

solar system small body discovery. Although Edgeworth’s name is sometimes attached,

the region is usually known as the ‘Kuiper Belt’, after the suggestion that such a region

would exist by Kuiper (1951). Pluto wasn’t officially removed from the planets and placed

among the Kuiper belt objects until 2006, and even that seemingly obvious recognition

was fraught with emotion and resistance (Williams & Bell, 2006). As of 2011, more

than 1200 Kuiper belt objects are observationally well established, and more remain

undiscovered. Attempts to debias the detection statistics suggest roughly one-tenth of

the mass in the Kuiper belt is in known objects, which gives the total mass of Kuiper

Belt objects as ∼ 10−1M⊕ (Vitense et al., 2010).

1.2.2 Focussing on the Cold Classical Kuiper Belt

It is generally recognised that the Kuiper belt is not a single population of bodies (Je-

witt & Luu, 1995; Luu et al., 1997; Fraser et al., 2010). The most common divisional
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scheme sets them into three dynamical classes: resonant objects, bodies in mean-motion

resonances with Neptune; scattered bodies, non-resonant objects with periapse . 38AU;

and classical bodies, bodies with low eccentricity/inclination orbits between 38 and 50

AU. Bodies periapses above 38AU, but with eccentricity e & 0.2 are sometimes identified

as an “extended-scattered disk”, or “detached disk” (Gladman et al., 2002; Brown et al.,

2004). The Classical Belt may be further subdivided into a “Cold Classical” and “Hot

Classical” belt, typically at ∼ 5◦, as there is a statistical excess of bodies with eccentric-

ity e < 0.1 and inclination i < 5◦ between ∼ 42 and ∼ 45 AU (Kavelaars et al., 2008)

(outlined in figure 1.1).

Amongst the populations of Kuiper Belt objects (KBOs), the Cold Classical Kuiper

Belt stands alone. Three important distinctions should be noted. Cold Classical Kuiper

Belt objects (CCKBOs) individually have different properties than other Kuiper Belt

objects. Cold Classical Kuiper Belt objects have different population properties than

other Kuiper Belt objects. Cold Classical Kuiper Belt Objects have a different dynamical

history from other Kuiper Belt Objects.

Cold Classical Kuiper Belt object have very red colours, while other KBOs range from

very red to grey in colour (Tegler & Romanishin, 2000; Perna et al., 2010; Fraser & Brown,

2011). The Hot Classical Belt, the Scattered Belt, and the Resonant Objects have similar

colour distributions to one another, and the colour of individual objects within those

populations is not correlated with their orbital properties (Morbidelli & Brown, 2004).

The origin of the red surface colour of CCKBOs (and the red and grey surfaces of other

KBOs) is not definitely understood. Gradie & Veverka (1980) suggested that outer solar

system objects might be expected to have red colours from complex organic molecules,

molecules that would be destroyed at higher temperatures. In this case, the colours would

reflect primordial composition, set by the temperature the object formed at, relative to

the condensation temperature of various ices (Doressoundiram et al., 2008). For instance,

Brown et al. (2011b) note that ammonia condenses as ice beyond ∼ 35 AU, and a CCKBO

4
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Figure 1.1: Known objects in the Kuiper Belt, plotted in semimajor axis and inclination.

The size of the circles corresponds to the size of bodies (where sizes are unmeasured,

it assumes an albedo of 0.04). Long period binaries are denoted with red ‘+’. The

approximate region of the Cold Classical Kuiper Belt is enclosed by the black dashed line.

Not that surveys preferentially target the ecliptic, so our knowledge is more complete at

lower inclinations. The lack of large objects at low inclination is not an artifact of that

selection bias. Orbital data and magnitude information for this plot is taken from the

Minor Planet Center (2012), as well as Young et al. (2007); Stansberry et al. (2008);

Sicardy et al. (2011); Sheppard et al. (2011); Parker et al. (2011); Müller et al. (2010);

Elliot et al. (2010); Carry et al. (2011); Brucker et al. (2009); Brown et al. (2011a); Brown

(2008)
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that formed in situ would retain it, while KBOs that formed closer to the Sun would not

(and formation closer to the Sun is expected for the other populations (Malhotra, 1995;

Levison et al., 2008)). Alternatively, colours may reflect the evolutionary history, for

instance, where the red colour is caused by the polymerization of surface ices by cosmic

rays, and the grey colour caused by the excavation of fresh ices in collisions (Luu &

Jewitt, 1996; Delsanti et al., 2004). Cold Classical Kuiper Belt objects also have higher

albedos than do members of the other populations (as well as the low eccentricity, low

inclination objects inside of 42 AU) (Brucker et al., 2009).

The largest CCKBOs are much smaller than the largest KBOs in all other popula-

tions (Levison & Stern, 2001; Brown, 2001). For the largest KBOs, their radii are well

constrained, at 1163±6 km (Sicardy et al., 2011), and 1173+20
−10 km (Zalucha et al., 2011),

with many additional objects & 500 km (Stansberry et al., 2008). The largest CCKBOs

are ∼ 200 km in radius, with a fairly large uncertainty, as these values are obtained in

model dependent ways (e.g., Fraser et al., 2010; Müller et al., 2010). Additionally, the

size distribution of CCKBOs is steeper than other populations. If we parameterise the

size (s) number (n) distribution of KBOs in the form:

dn

ds
∝ s−q . (1.2)

Observations find that CCKBOs have q = 5.1 ± 1.2 (Fraser et al., 2010), q = 7+1
−1.5

(Petit et al., 2011), at large sizes. At a size ∼ 50 km, the power breaks to a shallower

form (Bernstein et al., 2004), which is constrained to be q . 4 (Schlichting et al., 2009).

Particular care must be paid to where the fitting is done, as fitting a different range of

sizes will give a different q (Fuentes & Holman, 2008), as will the criteria used to discern

CCKBOs from other KBOs. Scattered objects, in contrast, have q = 2.8 ± 1.1 (Fraser

et al., 2010), q = 2.8 ± 0.1 (Vitense et al., 2010) (figure 1.2 contrasts the Cold Classical

Kuiper Belt from the total population). Most of the mass in the Cold Classical Kuiper

Belt is in ∼ 50 km size objects, while most of the mass in hot KBOs is in ∼ 1000 km

objects. In rough terms, the CCKB is 50± 20% of the classical bodies (Kavelaars et al.,

6



2009), and the total classical belt has a mass 0.01 ∼ 0.05M⊕ (Fuentes & Holman, 2008;

Vitense et al., 2010). These mass estimates should be regarded with some suspicion, as

they are made with assumed albedos that are probably too low for CCKBOs (Brucker

et al., 2009), and thus may overestimate the mass. As an order of magnitude estimate,

∼ 10−2M⊕ should be regared as secure.

Figure 1.2: Size number distribution of the Cold Kuiper Belt Objects, from Fuentes et al.

(2010). The bottom plot shows observed cold (i < 5◦) bodies from their survey, combined

with several others (blue points, with green error bars), as well as the best fit to their

survey (green solid line), and all surveys (red solid line). Note that “Size” here refers

to the diameter of bodies. The cold bodies with size & 75 km do not obey the same

size number distribution as the population as a whole. The top plot shows the effective

observing area of the combined surveys (Ω) as a function of their sensitivity to bodies of

a given size.
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The fraction of CCKBOs that are binaries is much higher than the fraction of all

KBOs that are binaries. Noll et al. (2008) found that 29+7
−6% of objects with inclination

less than 5.5◦ were detectable binaries, while 9.3+6.7
−4.4% were binaries. That rate prob-

ably understates the true difference, as the brightest KBOs in that sample had many

detectable binaries, and were all high inclination. Using on the dimmer bodies (so the

two populations are more alike), the fraction fell to 2.9+6.5%
−2.4 . Additionally, all of the

known ultra-wide binaries (those with separations & 0.1 Hill radii) are CCKBOs (Parker

et al., 2011). The difference in binary fraction could represent a difference in formation,

although it is more often taken to represent a different dynamical history, where primor-

dial binaries in the hot populations were subsequently disrupted. Close encounters with

Neptune will disrupt binaries, especially ultra-wide ones (Parker & Kavelaars, 2010a).

Current orbits keep most KBOs (apart from scattered objects) far away from Neptune.

It is generally accepted, however, that much of the current architecture was produced

during an outward migration of Neptune (Fernandez & Ip, 1984), which trapped the res-

onant populations into their mean-motion resonances Malhotra (1993); Malhotra et al.

(2000), scattered, hot classical, and detached objects into their current orbits (Duncan

& Levison, 1997). Such an event produces the dynamics of the KBO populations apart

from the CCKBOs (Levison et al., 2008), and would naturally explain their low binary

fraction and lack of wide binaries. The scattering event can leave a primordial population

at the position of the CCKB intact (Batygin et al., 2011), correspondingly with their high

binary fraction and wide binaries.

Given all these considerations, we find the Cold Classical Kuiper belt to be of par-

ticular interest, and thus expound upon its properties here. The CCKB extends from

∼ 42 to ∼ 46 AU in semi-major axis. Interior to 42 AU, low inclination orbits are unsta-

ble on timescales of ∼ 107 years (Duncan et al., 1995). At 40-42 AU, overlapping secular

resonances of Uranus and Neptune produce this orbital instability (Knezevic et al., 1991;

Lykawka & Mukai, 2005). An outer edge to the CCKB is detected at 45 ∼ 46 AU
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(Dones, 1997; Hahn & Malhotra, 2005; Kavelaars et al., 2009). The origin of the outer

edge is not established. The decreased surface density continues for at least ∼ 10 AU

(Bernstein et al., 2004; Parker & Kavelaars, 2010b). The most obvious explanation is

that it is the primordial edge of the solar system, as no evidence of MMSN type results

are detected at larger distances. From the overdensity of KBOs at low inclination, the

inclination distribution of CCKBOs seems to have a characteristic scale 2 ∼ 3◦ (Brown,

2001; Gulbis et al., 2010). This is not very secure, as other results show the presence

of a substantial number of CCKB-type objects at inclinations of up to ∼ 10◦ (Peixinho

et al., 2008; Fuentes et al., 2011).

1.2.3 Trans-Neptunian Dust

In addition to direct imaging of the large bodies, the Kuiper Belt can also be detected

by the presence of small dust grains in the outer solar system. A substantial fraction of

these grains are produced in collisions between Kuiper Belt objects (also see Yamamoto

& Mukai, 1998). Impacts of dust grains onto the Voyager spacecrafts find small dust

grains to ∼ 50 AU from the sun (Gurnett et al., 1997). Other probes with instruments

more suited to detecting dust grains have detected dust grains inside 20 AU, some of

which must originate in the Kuiper belt (Landgraf et al., 2002; Poppe et al., 2010)1.

The Voyager results give a volume density of dust grain that is ∼ 2 × 10−14 cm−3 in the

ecliptic. Given the uncertainties in dust scale height, the size of the grains, etc., the dust

density implies the grains should have a total (thermal + reflected) luminosity at least

∼ 10−8L⊙. This is well below the upper limits set by observation of ∼ 10−6L⊙ (Teplitz

et al., 1999; Ichikawa & Fukugita, 2011). The dust of the outer solar system is confused

with similar dust in the inner solar system, produced by asteroids and comets, which has

1By assuming all grains are the maximum detectable mass from the Pioneer experiments, then placing
them at 40 AU.
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a total luminosity of ∼ 5 × 10−8L⊙ (Hahn et al., 2002)2.

1.3 Extrasolar Debris Disks

Observations of young stars have confirmed that they have circumstellar nebulae (Mc-

Caughrean & O’Dell, 1996). These nebulae posses comparable sizes and masses to those

of the MMSN (with significant dispersion), lending additional weight to the nebular hy-

pothesis (Andrews & Williams, 2005). Such circumstellar disks are ubiquitous around

young stars, and the disks disappear within 1-10 Myrs (Zuckerman et al., 1995; Haisch

et al., 2001). A similar timescale should be expected to apply to the solar nebula. Al-

though the solar nebula may have been truncated at as little as 30 AU, extrasolar nebulae

can extend to hundreds of AU from the central star (Dutrey, 2007).

Dust grains around older stars have been detected in both reflected starlight (Smith

& Terrile, 1984) and thermal radiation (Aumann et al., 1984). A host of surveys have

followed: Walker & Wolstencroft (1988); Oudmaijer et al. (1992); Su et al. (2006); Bryden

et al. (2006); Lestrade et al. (2009); Matthews et al. (2010); Moór et al. (2011). Analogous

to the dust in the solar system, these disks must be fed fresh dust by larger parent bodies.

Typical surveys can detect extrasolar dust disks as dim as ∼ 10−4L∗. At present, the

Herschel telescope is bringing that limit down to ∼ 10−6L∗, which means that we should

soon have an observational sample of Kuiper belt-like debris disks around other stars

(Eiroa et al., 2010). In the interim, we must make do understanding the statistics of

those debris disks already detected. With luminosities 102 − 104 times that of the sun,

it is a puzzle how the sun fits into this picture. Indeed, if one extrapolates from the

observed population, the sun is unusually faint, among the dimmest 10% of solar-type

stars (Greaves & Wyatt, 2010).

In the sample of known disks, at fractional luminosities of 10−4L∗ or higher, debris

2The possibly dimmer inner solar system is able to obscure the outer solar system because these
observations are all taken near the Earth.
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Figure 1.3: Fractional luminosity against stellar age for debris disks observed around

nearby F stars, from Moór et al. (2011). The t−0.3 line represents the predicted luminos-

ity evolution from Löhne et al. (2008), and the t−1 represents the predicted luminosity

evolution from Wyatt et al. (2007b). Both are steady state collisional cascade debris

disk models. The decay is comparable to what is expected from steady state collisional

cascade models. Disks show a slow decay in fractional luminosity, from a maximum of

∼ 10−3 at ∼ 108 years to a maximum of ∼ 10−4 at ∼ 1010 years.

disks with 70 µm excess are found around ∼ 15% of solar type stars, a fraction which

decays little with age (Trilling et al., 2008) (figure 1.4). While the total population of

detectable debris disks remains roughly constant with age, the brightest disks decay in

luminosity - the occurence of bright disks (> 5 × 10−4) decays sharply with age, with

few detectable around stars more than 100 Myrs old (Moór et al., 2006). Assuming a
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blackbody spectrum, 70µm emission corresponds to dust at 10 - 100 AU. The luminosity

evolution of the population is consistent with the slow grind down of massive kuiper belt

analogues in a steady state cascade (e.g., Moór et al., 2011). Some models of the origin

of the solar systems’ low luminosity disk rely on sharp transition in brightness associated

with dynamical clearing of the primordial population (e.g., Booth et al., 2009). If that

is the case for the solar system, however, it would appear to make it an outlier.

Figure 1.4: Fraction of FGK stars with detectable debris disks as a function of the

stellar age, from Trilling et al. (2008). The survey was done with 24 µm and 70 µm data

from the Spitzer Space Telescope. The detection threshold was relative to the noise in the

observations of the particular star, but detections were typically at fractional luminosities

of 10−5 ∼ 10−4.
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At shorter wavelength (which measures hotter dust located closer to the host star)

the fraction of the stellar population with detectable debris disks is much smaller (e.g.

at 24 µm, corresponding to 1-10 AU for blackbodies, the detection rate is ∼ 4% of solar

type stars at ages of 108 ∼ 1010 years (Trilling et al., 2008), while it is ∼ 10% before

108 years (Meyer et al., 2008). Many of the older systems with warm dust (within a few

AU) must be transient events (Wyatt et al., 2007a; Smith et al., 2008), in contrast to the

cold dust systems, which can all be steady state cascades. Most known warm disks are

around young (. 100 Myrs) (Moór et al., 2009, and references therein), but this may be

a selection bias in surveys for warm dust disks. Although in the MMSN surface density

(and thus, dust luminosity) peaks at the star, this distance dependence is not surprising.

Steady state debris disk models predict that evolution proceeds inside out (chapter 2).

At distances of 10s of AU, the decay time becomes comparable to stellar ages (Gyrs),

while closer to the star, the disks are more evolved, and thus dimmer.

1.4 Physics of Debris Disks

1.4.1 Radiative Blowout

A spherical dust grain orbiting a star intercepts the stellar radiation, which provides an

outward momentum (Kepler, 1619; Maxwell, 1873; Lebedev, 1901). Outgoing radiation

with energy E has momentum p = E/c, (where c is the speed of light), and consequently

a dust grain of radius s, orbiting the star with luminosity L∗ at a distance a intercepts

outgoing momentum at a rate:

dp

dt
= Frad = πs2 L∗

4πa2c
. (1.3)

This force can be compared with the gravity from the star Fg = (4πρs3) /3×(GM∗) / (a2),

(where M∗ is the star’s mass, and ρ is the mass density of the grain) to yield the ratio of
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Physical constant Symbol

Speed of light c ≡ 29979245800 cm s−1

Gravitational constant G ≈ 6.67 × 10−8cm3g−2s−1

Mass of the Earth M⊕ ≈ 6 × 1027g

Properties of the central star Symbol

Mass M∗

Radius R∗

Luminosity L∗

Angular size α

Properties of orbiting bodies. In some cases, we divide bodies into two groups;

in this case, the symbols for small and large

bodies are listed in parentheses (small, large)

Mass density ρ

Radius s, (s,R)

Mass m = 4π
3

ρs3

Specific energy for catastrophic disruption Q∗

Escape velocity vesc =
√

2Gm
R

∼ √
GρR

Semimajor axis a

Planetesimal belt radial width ∆a

Orbital eccentricity e

Orbital inclination i

Orbital period P =
√

4π2

GM∗
a3

Orbital frequency Ω =
√

GM∗

a3

Keplerian velocity vkep = 2πa
P

= Ωa =
√

GM∗

a

Hill radius RH = a 3
√

m
3M∗

∼ R
α

Hill velocity vH = ΩRH ∼ α− 1
2 vesc

Velocity dispersion v ∼
√

e2 + i2vkep, (u, v)

Table 1.1: Symbolic notation commonly used in this work.14



the two forces:

β ≡ Frad

Fg

=
L∗

GM∗

3

16πρc
s−1. (1.4)

Alone, a particle for which β = 1 would be necessarily unbound from the system, with

no net force to hold it. Around sun-like stars, this means that particles smaller than

s ∼ 10−4 cm are unbound. When a grain is released from a much larger body on a

circular Keplerian orbit, if β ≥ 0.5 the grain will escape. Given the uncertainties based

on grain shape, density, etc, this should not be taken as more than an order of magnitude

estimate for grain size in a real disk anyhow. So we write:

sblow−out ∼
L∗

GM∗

3

8πρc
. (1.5)

In practice, this will not form a perfectly sharp cut-off, but we can approximate the disk

as having no particles below sblow−out for most purposes (Löhne et al., 2008). When

particles with β & 0.5 are produced, they leave the system on hyperbolic orbits. The

outgoing grains can cause avalanching collisional cascades in particularly dusty disks

(Grigorieva et al., 2007), but in most cases it can be treated as instantaneously removed.

1.4.2 Poynting Robertson Drag

A body orbiting a star will experience a drag from the radiation pressure. Photons

streaming outwards are encountered as a headwind by the moving bodies, which conse-

quences experiences a drag force, called the Poynting-Robertson (PR) drag (Poynting,

1904; Robertson, 1937). The resulting force has the form (Burns et al., 1979):

~F ≈ SA

c
Qpr

[(

1 − ṙ

c

)

Ŝ − ~v

c

]

(1.6)

Where S is the total flux density of outgoing radiation, A is the cross-section of the grain

(A ∼ πs2), r is the distance from the sun, Ŝ is the unit radial vector, and Qpr is a quality

factor that accounts for how the incident radiation is absorbed, reflected, and re-emitted.

A perfect absorber has Qpr = 1, and the Sun has S ≈ 1.36×106 erg/s/cm2
((

1 AU2
)

/ (a2)
)

.
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A particle on a circular orbit has ṙ ≈ 0. In that case, starting from a semimajor axis a0,

the force can be integrated to solve for the evolution of the circular orbit’s semimajor

axis, which obeys:

a ∼ a0e
− S

c2ρst . (1.7)

So the grains fall towards the star with a timescale τpr ∼ c2ρsa2L−1
∗ . For cm sized grains

at 1 AU, this is of order one million years. Micron sized grains at the earth’s position will

spiral into the sun within a few hundred orbits, but live ∼ 107 orbits before a catastrophic

collision. At 40AU, these numbers of ∼ 103 and & 106 respectively. The solar debris disk

loses mass primarily by PR drag. For extrasolar debris disks, however, the collision times

in the outer disk are much shorter, typically ∼ 102 − 104 orbits for those disks which

have so far been detected (§1.3). In this case, we might expect that radiation blow-out

might be expected to compete with PR drag as the dominant dust removal mechanism,

and a more detailed analysis shows that collisional destruction with radiative blow-out

is the dominant mass removal mechanism in extrasolar disks (Wyatt, 2005).

1.4.3 Disruption of Bodies

In a debris disk, bodies evolve by primarily catastrophic disruption. A collision is defined

to be catastrophically disruptive if the body loses at least 50% of its original mass. An

ideal strengthless body can be disrupted if enough energy is imparted in a collision to

move half the mass to infinitety. A shell a distance s from the body’s center, with mass

dm = 4πρs2ds can be lifted from a body of mass s = 4π/3ρs3 to infinity with energy dU ,

where:

dU = −16π2

3

Gρ2s5

s
ds, (1.8)

this means for a body of uniform density, and size s0, a total energy of U =
∫ s0

2−(1/3)s0
dU =

(16/15) π2Gρ2s5
0 is needed for catastrophic disruption. The usual convention measures

the specific energy of catastrophic disruption, Q∗ = U/m, so an ideal strengthless body
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has

Q∗ =
4π

5
Gρs2. (1.9)

Non-ideal bodies will require more energy, in a fashion that may be radius or impact ve-

locity dependent. Simulations, laboratory experiments, and theoretical arguments favour

Q∗ ∝ sβ with 1.2 . β . 2 (Benz & Asphaug, 1999; Pan & Sari, 2005; Stewart & Lein-

hardt, 2009, and references therein) for large bodies where gravitational self binding is

the primary source of cohesion.

In smaller bodies, the need to fragment the body is what sets the threshold for

disruption. Once fragmented, the pieces are dispersed rather easily, the opposite of

the large body case just discussed. For a naive physical picture, we can imagine a

catastrophic disruption breaks a body of mass m0 into fragments of masses 0 to mmax,

which obey a single, cumulative power law N (> m) = ξm−l, where ξ, l are material

constants. By requiring N (mmax) = 1, we get ξ = ml
max, and from mass conservation we

get l = (1 + mmax/m0)
−1, where m0 is the mass of the disrupted body (Greenberg et al.,

1978). A minimally catastrophic collision will have mmax = 0.5m0 (from the definition of

catastrophically disruptive), and a maximally catastrophic collision (no large fragments

at all) will have mmax << m0; these two cases have l = 2/3 and l = 1 respectively. The

newly created bodies have total surface area:

A =

∫ mmax

mmin

−4πξ
l

l + 1
m−(1+l)

(

3

4πρ

)
2
3

m
2
3 (1.10)

The final surface area thus obeys A ∝ ml
0. If we assume that the energy required to

create the new surfaces is proportional to their area, then Qcrit ∝ ml
0, and we have

Q∗ ∝ s3(1−l), (1.11)

with 2/3 ≤ l ≤ 1. Q∗ should decrease with size for small bodies. This approach follows

Farinella et al. (1982), and is meant only to be illustrative of how one might think about

disruption of small bodies. For instance, Housen & Holsapple (1990) develop a model
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in which disruption of small asteroids is accomplished by the joining of pre-existing

cracks in the material, which is more accurate. Many subsequent models (e.g., Benz

& Asphaug, 1999; Jutzi et al., 2008; Stewart & Leinhardt, 2009) better characterise

catastrophic disruption, and should be employed in any investigation (as we do, later, in

our numerical investigations).

Thus we turn to the numerous numerical, analytic, and even experimental approaches

which have been used to estimate the criterion for catastrophic disruption of a body.

The current canonical approach is that of Benz & Asphaug (1999). The employ a critical

specific energy for catastrophic disruption for a body of size R:

Q∗ = Q0

(

R

1 cm

)a

+ Bρ

(

R

1 cm

)b

. (1.12)

A body of mass M is catastrophically disrupted by a body of mass m in a collision if

the impact velocity u exceeds:

1

2
mu2 ≥ Q∗M. (1.13)

The specific values of the material constants Q0, a, B, b that Benz & Asphaug (1999) vary

with the material of the parent body, and the speed of impact. In particular, they report

values of Q∗ as shown in table 1.2. Although the formulation considers only energy, that

Table 1.2: Coefficients of the critical specific energy for catastrophic disruption in Benz

& Asphaug (1999)

material v(km/s) Q0(erg/g) B(erg cm3/g2) a b

basalt 5 9.0 × 107 0.5 −0.36 1.36

basalt 3 3.5 × 107 0.3 −0.38 1.36

ice 3 1.6 × 107 1.2 −0.39 1.26

ice 0.5 7.0 × 107 2.1 −0.45 1.19

the values of Q0, B, a, and b depend on the velocity implies that momentum is a factor.
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Nevertheless, note that because a < 0 and b > 0 the Q0 (R/1 cm)a term is dominant at

small sizes, and the Bρ (R/1 cm)b term is dominant at large sizes. Effectively, Q∗ can

be thought of as having two regimes, one at small sizes where bodies are held together

by molecular cohesion and van der waals forces, and one at large sizes, where bodies are

held together by self-gravity. The transition size is typically expected to be ∼ 104 cm.

We can then separate equation 1.12 into two parts:

Q∗ =















Q0

(

R
1 cm

)a
R . 104 cm,

Bρ
(

R
1 cm

)b
R & 104cm.

(1.14)

Bodies experience two regimes of disruption. Bodies smaller than ∼ 100 m are held

together by intermolecular forces, and bodies larger than ∼ 100 m are held together

primarily by their self-gravity.

1.4.4 A Size-Number Distribution for Bodies

In general, we express the relationship between the number of bodies n, and their size

s in a differential power law with the form:

dn

ds
= nks

−q. (1.15)

Here nk and q are parameterisations that depend on the population. Dohnanyi (1969)

noted that if bodies are being broken apart in a scaleless way, q = 3.5 is the equilibrium

solution. The arises from the fairly straightforward consideration that in an infinite

scaleless collisional cascade, the mass flux must be constant. In this case, consider the

mass flux at size s, broken up by particles of size ks, and the bodies broken up by the

bodies of size s, having themselves a size k−1s. Individual bodies of size s break up at a

rate πs2n (ks)−q ∆ (ks), which means the total ns−q should produce a total mass flux of:

dM
dt

∣

∣

∣

∣

s

∝ πs2n (ks)−q ∆ (ks) n
4πρ

3
s3∆s. (1.16)
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Compare this to the production at some other size, R. Then

dM
dt

∣

∣

∣

∣

R

∝ πR2n (kR)−q ∆ (kR) n
4πρ

3
R3∆R.

At equilibrium, the mass flux at all sizes must be constant, i.e. dM/dt|s = dM/dt|R, so

when we divide the two equations we find:

( s

R

)7−2q

= 1, (1.17)

which yields the solution q = 3.5. The same approach yields

q =
6 + η

1 + η
, (1.18)

if a scale is introduced into the problem by having bodies of size s broken up by bodies of

size ksη (see e.g., Wyatt et al., 2011). Such a scale is expected from material properties,

although it may also be introduced by a size dependent velocity (e.g., Pan & Schlichting,

2012). This is a more realistic case, and so we ask “What values of q do we expect in

the size-number distribution, and where?”

We discussed realistic disruption criteria in section 1.4.3. Using those criteria, and

assuming velocity dispersions do not depend on size in a debris disk, we find that during a

collisional cascade, we expect bodies to obey two different power laws, joined at ∼ 104 cm.

From equation 1.13, we get that η ≈ 1 + a/3 for small bodies, and η ≈ 1 + b/3 for large

bodies. For the values in table 1.2, equation 1.18 means that small bodies in collisional

equilibrium will obey −3.66 & q1 & −3.70, across the various impact velocities and

possible material compositions. Likewise, large bodies in collisional equilibrium will obey

3.09 & q2 & 3.04.
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1.5 Physics of Coagulation

1.5.1 Dynamical Fricton

A planetesimal moving through a swarm of other planetesimals will scatter off them due

to gravity. The phenomena is not unique to planetesimal disks, and does not depend on

the Keplerian potential; indeed, it was first identified in stellar clusters (Chandrasekhar,

1943). Such kicks occur in random directions, and sum in the first order to zero if the

planetesimal is moving with the bulk flow. If the planetesimal is not moving with the

bulk flow, it will preferentially receive kicks that tend to align it with the bulk flow. This

movement against the bulk flow provides a retarding term. The planetesimal (represented

with a subscript 1) moves at speed v through the sea of bodies (represented here with

the subscript 2) moving at speed u, encountering them in face-on collisions at a rate:

fc =
n2

V
πb2 (v + u) , (1.19)

where n2/V is the volume density of other bodies, and πb2 is the cross section for an

interaction which changes the velocity of body two by ∼ u (this equation and much of this

derivation is from Goldreich et al., 2004b). Each such encounter imparts a momentum

kick of size ∆~p ∼ m2 (v + u) ×−~v/ |~v|. This combines with the tail-on collisions (which

occur at a frequency proportional to v−u and impart a momentum kick proportional to

(v − u) to produce a velocity loss of

1

v

dv

dt

∣

∣

∣

∣

‖

≈ −m2

m1

n2

V
ub2. (1.20)

In addition to that term which operates parallel to body 1’s velocity, a second order

term operates orthogonal to body 1’s velocity (as body 2 generically has a parallel and

an orthogonal velocity component). These kicks have a magnitude vkick ∼ (m2/m1) u⊥,

and for isotropic u we can assume u⊥ ∼ u. Because they are randomly oriented, the first

order term vanishes, as a kick and its opposite are equally likely. The second order terms
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over N interactions add up
∑

v2
kick ∼ N (m2/m1)

2 u2. These kicks add, and the body

m1 sees its velocity double once 〈∑ v2
kick〉

0.5 ∼ v. Thus we can write:

1

v

dv

dt

∣

∣

∣

∣

⊥

≈ n2πvb2

V N
≈ n2

V
πvb2

(

m2u

m1v

)2

≈ −m2u
2

m1v2

1

v

dv

dt

∣

∣

∣

∣

‖

. (1.21)

We can combine these terms to form a full dynamical friction equation:

1

v

dv

dt

∣

∣

∣

∣

‖

≈ −m2

m1

n2

V
ub2

(

1 − m2u
2

m1v2

)

. (1.22)

Note that the right hand side is zero when m1v
2 = m2u

2. So in the presence of

dynamical friction and the absence of anything else, the bodies will come to an equilibrium

of m1v
2 ∼ m2u

2 for any sizes 1, 2, which is the equipartition of kinetic energy. With

other forces present, dynamical friction will work towards equipartitioning kinetic energy.

In debris disks, equations for dynamical friction are necessarily more complicated, the

presence of the central star distorts the geometry (a factor we’ve entirely neglected here).

The interaction radius b has two regimes. When the encounter velocity is dominated

by the random velocities of the bodies (i.e., u > vH), an encounter at separation b will

spin u through a large angle if the force of gravity between the bodies Gm1m2/b
2 is

comparable to the centrifugal force for a circular path m2u
2/b of that radius. In that

case, we have b ∼ Gm1/u
2 ∼ R (vesc/u)2. Then the dynamical friction term is:

1

v

dv

dt
∼ −σΩ

ρR

(vesc

u

)4
(

1 − m2u
2

m1v2

)

, (1.23)

where σ ∼ m2n2/ (2πa∆a) is the surface mass density of the small bodies we labelled

with the subscript 2, and we substituted V ∼ 2πa∆ah, where h is the scale height of

bodies, with h ∼ (u/vkep) a ∼ u/Ω so that our expression for the rate is the same as

Goldreich et al. (2004b). If the encounter velocity is dominated by the Keplerian shear,

the encounter distance is typically the Hill radius RH, and the encounter velocity is the

Hill velocity vH. In that case, the kick received is vkick ∼ (m2/m1) vH, and the dynamical

friction is

1

v

dv

dt
∼ −σΩ

ρR
α−2

(

1 − m2v
2
H

m1v2

)

. (1.24)
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In most applications viscous stirring will serve to keep the large bodies much hotter than

equipartition, and the left bracket in equations 1.23 and 1.24 is very close to unity, and

can be ignored.

1.5.2 Viscous Stirring

Unique to disks orbiting in a central potential is viscous stirring. This process takes

potential energy out of the central potential and converts it into random motions. It can

be qualitatively understood as follows (Safronov, 1969; Goldreich et al., 2004b). Consider

a body of mass m, on an eccentric orbit (with random velocity urandom), encountering

much larger bodies on circular orbits. Because their interactions conserve both energy

and momentum, velocity vectors are rotated randomly in the center of mass frame. In

the orbital plane, the vectors are rotated an average of π/2. If an encounter occurs

at apoapse or periapse, the random velocity vector is rotated from being in line with

the keplerian velocity vector to being orthogonal to it, changing the total velocity from

ukepler + u to
√

u2
kepler + u2 ≈ ukepler + 0.5u (here I have assumed ukepler >> u). Thus the

random velocity is halved. If the encounter occurs at quadrature, the process is reversed,

and the random velocity is doubled. Then the average kinetic energy in an encounter is

changed from mu2 → 0.5m (0.5u)2 + 0.5m (2u)2 = 17/8mu2. The numeric coefficient is

wrong, of course, but the underlying mechanism is elucidated.

The encounter rate is the same as in section 1.5.1, so we can write a stirring equation

of the form:

1

u

du

dt
∼ n2

V
uπb2, (1.25)

and as in section 1.5.1, when smaller bodies stir bigger bodies (those with mass M and

random velocity v), so we need multiple collisions to achieve a turn of π/2. The same

random walk principle as we used to derive equation 1.21 applies, and we get:
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1

v

dv

dt
∼ n1

V
uπb2

(

Mv

mu

)2

. (1.26)

Here we use V defined by the larger velocity (presumably u). It is notable that the

form of b here is different from section 1.5.5. There, gravitational focussing must be

sufficient to bring bodies into contact, here it needs only to be sufficient for the bodies

to be rotated through an angle of π/2. This happens for an impact parameter b where

the kinetic energy mu2 of the incoming particle is equal to the work done on it (roughly

GmM/b2 × b), or b ∼ Gm/u2 ∼ R (vesc/u)2. Then the stirring is

1

u

du

dt
∼ n2

V
uπR2

(vesc

u

)4

∼ ΣΩ

ρR

(vesc

u

)4

. (1.27)

This form applies only to dispersion dominated encounters. Shear dominated encoun-

ters proceed differently. Then all bodies entering the Hill sphere (which they do with

frequency f ∼ (n2/V ) uR2
H) acquire a velocity dispersion of roughly the Hill velocity.

Since they begin with much less velocity, they gain energy of roughly mv2
H. So they have

an effective b ∼ RH

√

vescape/u. In that case, the viscous stirring rate is

1

u

du

dt
∼ n2

V
uπR2

H

(
√

vesc

u

)2

∼ ΣΩ

ρR
α−2

(vH

u

)

. (1.28)

Detailed equations appropriate for keplerian disks have been developed by various au-

thors (Safronov, 1969; Stewart & Kaula, 1980; Hornung et al., 1985; Stewart & Wetherill,

1988; Ida et al., 1993; Stewart & Ida, 2000; Ohtsuki et al., 2002). Typically this is done

in conjunction with dynamical friction, as is the case with most of the references listed.

1.5.3 Sticking of Small Grains

Stars form from the gas in giant molecular clouds, with is embedded with dust particles

less than a micron in size. As the cloud collapses, the amount of angular momentum

present results in a disk forming around the central protostar with ∼ 10−1 − 10−2 of the
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total mass. As the densities increase, dust grains begin to frequently collide, and small

dust grains stick to one another by van der Waals forces in low velocity collisions.

1.5.4 The First Planetesimals

Micron sized grains are strongly coupled to the gas. As the grains grow larger, they

become partially decoupled from the gas. The decoupling raises the grains’ random

velocities as the gaseous disk rotates more slowly than a particle disk, due to gas pres-

sure support (Adachi et al., 1976). The partially decoupled grains move at intermediate

speeds, so their relative velocities become too high for effective sticking (Blum, 2010).

Compounding that problem, Weidenschilling (1977a) showed that while very small parti-

cles are well-coupled to the gas, following sub-keplerian orbits, and large bodies effectively

decouple from the gas, losing only a small amount of energy to the gas disk over the sys-

tem life, intermediate sized bodies experience a strong drag and migrate quickly towards

the central star. At 1 AU, they find a lifetime of ∼ 102 years for meter-sized bodies, grow-

ing only to ∼ 104 years at Kuiper belt distances. The theoretical difficulties in growing

meter-sized particles are known as the “meter size problem”. Subsequent estimates have

re-iterated this problem (Klahr & Bodenheimer, 2006).

In order to solve the meter size problem, theorists have eschewed meter sized bodies

for more cooperative sizes. Safronov (1969), and independently Goldreich & Ward (1973)

showed that if centimeter sized bodies could settle to the mid-plane of the protostellar

disk, they could collapse under self-gravity to form kilometer sized objects. Without

de-coupling of the gas and dust (which can be incomplete), the gas, with ∼ 102 times as

much mass as the dust, is dominant in the collapse. Collapse of gas produces Jovian (or

larger) bodies at large radii, it cannot be the source of smaller bodies, such as asteroids

or Kuiper belt objects (Kratter et al., 2010). Small dust grains will remain bound to the

gas, however, as grains become larger, they will begin to settle out of the nebula towards

the mid-plane. If the density of the small grains exceeds the Roche density, they will
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be bound and may collapse. Historically, it was believed that the interface between the

gas rich and dust rich layers would become unstable, and excite turbulence that would

prevent them from becoming sufficiently thin for collapse (Weidenschilling, 1980, 1995).

Despite the difficulty in concentrating the small grains, direct collapse has continued

to be favoured as the most promising way to form the first planetesimals. The question

of how to achieve the densities necessary for gravitational collapse has seen significant

progress in the last decade. Youdin & Shu (2002) showed that the mechanism of Goldreich

& Ward (1973) would operate if there were local variations in the dust-to-gas ratio that

lead to patches of enhanced dust density. Numerical simulations have demonstrated that

the process can be effective (Fromang & Nelson, 2005; Johansen et al., 2007; Cuzzi et al.,

2008) These simulations are necessarily highly simplified, and rely on uncertain (and

different) mechanisms to produce the needed overdensities. Consequently, the initial size

of planetesimals, the fraction of small bodies converted into planetesimals, and similar

questions, remain open.

1.5.5 Planetesimal Coagulation

However the first planetesimals form, they are large enough that they are strongly decou-

pled from the gas, and growth proceeds in a straightforward way. These bodies grow by

accreting other bodies which stick due to the mutual gravity. For this problem, Safronov

(1969) pioneered the “particle in a box” approach to the problem, where individual plan-

etesimals are treated in the approximation where they move randomly about the swarm

of planetesimals with a random velocity u related to their eccentricity e by u ∼ evkepler.

N bodies in a volume V with an impact cross section of πb2 collide with a frequency

fc =
N

V
πb2u. (1.29)

This approach is necessary for a computational analysis as the Minimum Mass Solar

Nebula has enough heavy elements to produce ∼ 1014 one kilometer sized bodies, far too
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many to be tracked for the 105 − 107 dynamical times (orbits) that would be necessary

to perform an N-body simulation of planet formation.

If the mutual gravity between bodies is small, we can neglect it, and consider the

interaction between two bodies being a collision with a cross section for interaction for

bodies of size s and R to simply the geometric cross section between the two bodies:

πb2 = π (R + s)2 . (1.30)

In the limit that R >> s, we can find the mass doubling time for the larger bodies,

with mass M , by accreting the smaller bodies, with mass m, by applying (1/M) (dM/dt) ∼

fc (m/M). The bodies orbit in a volume V ∼ 2πa∆ah, where h is the scale height of

bodies, with h ∼ (u/vkep) a. The bodies double grow like:

1

M

dM

dt
∼ Nm

2πa∆a u
vk

a
πR2 1

M
u ∼ σΩ

ρR
. (1.31)

Note the constants have been dropped. The important point is that the mass doubling

time scales as τgrowth ∝ R. Larger bodies take longer to grow than smaller bodies, and

thus the distribution remains tightly clustered. Bodies that fall behind catch up due to

the enhanced growth rate, bodies that get ahead are slowed until the pack catches up.

This results in the name “orderly growth”.

Eventually, a few bodies will get far enough ahead of the pack that gravitational fo-

cussing will become important. As noted earlier, a population of bodies at a single size

will have a velocity dispersion roughly their own escape velocity; bodies that are sub-

stantially bigger than the average will accrete other bodies with significant gravitational

focussing. Consequently, they have a cross section:

πb2 = π (s + R)2

(

1 +
(vesc

u

)2
)

∼ π (R)2
(vesc

u

)2

, (1.32)

with vesc =
√

2GM/R ∼
√

8GρR2, we the form of the mass double time changes to:

τgrowth ∼ ρu2

σΩGR
. (1.33)
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Here, the qualitative nature of the growth changes. Larger bodies have shorter growth

times, and consequently run away from the group; this leads to the name “runaway

growth”. Runaway growth produces a few large bodies, while growth of smaller bodies

is inhibited as the velocity dispersion goes up.

Runaway growth cannot continue forever. Eventually the large bodies have enough

mass that they excite the orbits of the remaining planetesimals through viscous stirring

(Ida & Makino, 1993), and enough planetesimals are accreted that their surface density

decreases (Lissauer, 1987), which ends the runaway growth regime. Runaway growth

begins to slow when ΣM > σm (Ida & Makino, 1993), at this time most of the mass is

still in the smaller planetesimals.

A change occurs when the large bodies begin to dominate the stirring of their own

zone. These bodies, called oligarchs, are locally in runaway, but oligarchs in different

zones do not run away from one another. Oligarchy begins when bodies reach a size:

Roligarch ∼
(

ρ
1
3
⊙

ρ
7
3

σm

a2

)

1
7

. (1.34)

Numerical simulations find that bodies are a factor of a few larger than this size before

the onset of oligarchic growth due to corrections to the two-size approximation used

here (Ormel et al., 2010). This is somewhat more unwieldy, as the uncertainty in m is

significant in the astrophysically interesting cases. Oligarchs remain well separated from

one another, as Kokubo & Ida (1998) found they typically remain several Hill radii apart.

Oligarchic growth continues until the bodies contain most of the mass in their zone,

at which point they are called isolated. Bodies become isolated when they reach an

isolation size Riso:

4π

3
ρR3

iso ≈ 2πσaRH (1.35)

Riso ∼
(

a2σ

ρ2/3ρ
1/3
⊙ R⊙

)
1
2

.

Once the isolated bodies have sufficiently depleted the remaining planetesimals, their
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long-range interactions will stir each other into crossing orbits. At this point, growth is

dominated by giant impact mergers (Chambers, 2001). The giant impacts end when the

planets are on sufficiently distant orbits that they are stable over the age of the star.

The picture outlined previously is the usual model of planet formation. The collisional

cross sections above were derived assuming the sun’s gravitational role was negligible.

When the relative velocity between the two bodies is dominated by the keplerian shear,

rather than the eccentricity and inclination, the cross section modified (Goldreich et al.,

2004b). In the case, the assumption that the large body is moving through an infinite

sea of small bodies in equation 1.29 is no longer valid. Instead, we note the small bodies

have a scale height less than the Hill radius, and thus the Hill sphere intercepts a sheet

with surface density σ to a distance RH which moves by at a shearing speed of ΩRH.

Thus small bodies enter the Hill sphere of the large body is ∼ (σ/m) R2
HΩ. Once inside

the Hill sphere, the small bodies motion relative to the new standard of rest (i.e. in the

large body frame rather than the stellar frame) has random velocity of roughly the Hill

velocity (as that was the shearing speed on entry). The large body intercepts an area

πR2 (v2
esc) / (v2

H) of the total area (u/Ω) RH of the incoming bodies. The large body then

accretes mass at a rate ΩσR2α−1 (vrmH/u). Here the α is from (Goldreich et al., 2004b),

who define:

α ≡
(

ρ⊙

ρ

)
1
3 R⊙

a
. (1.36)

In this case the growth time is:

τgrowth ∼ ρuα2

Ω2σ
. (1.37)

This has a limit, however. When (u/Ω) < α−0.5R the large body intercepts all the

bodies vertically, and the focussing is capped by the scale height of the disk. In that case

(Rvesc) / (vHRH) of the bodies entering the Hill sphere, resulting in a growth time

τgrowth ∼ ρR

σΩ
α

1
2 (1.38)

. Note that in the former (thin) case, the growth time is independent of size. All bodies
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grow together in a uniform fashion. In the latter case (superthin), the growth time is

linear with size. With larger bodies taking longer to grow, the growth reverts to the

orderly fashion.

1.6 Previous Conglomeration Simulations

Under special conditions, analytic solutions can be found for growing planetesimals. For

instance, Makino et al. (1998) find that an infinite sequence of bodies obeying energy

equipartition and undergoing runaway growth have a stationary solution at dn/ds ∝ s−6.

In other restrictive cases, other steady-state solutions may be found. Schlichting & Sari

(2011) use the “two-groups” approximation to derive a size-number distribution and

velocity dispersion during planetesimal growth with dn/ds ∝ s−4 during runaway growth.

We show in section 3, however, that the solution is not robust to the inclusion of necessary

physics. While analytic solutions would be preferable, numerical investigations are often

used as they allow progress with more of the necessary physics.

Modern planetesimal growth simulations fall into two general categories; N-body

simulations, in which individual particles are tracked, and statistical simulations, in which

all bodies with similar properties are binned together. N-body simulations are limited

in the number of bodies they can track (with current computing power, simulations

use up to a few thousand particles (e.g., Ogihara & Ida, 2009; Morishima et al., 2010).

Consequently, they are restricted to late times when bodies are quite large (∼ 103 km).

Statistical simulations can cover the early times, but cannot address later phases such as

oligarchy. Hybrid schemes (e.g., Bromley & Kenyon, 2006; Ormel et al., 2010) attempt

to combine the two approaches to draw on the strengths and cover the weaknesses of

each. They still must sacrifice some physics so they can be computed in a reasonable

time, however.

Planetesimal growth simulations have tended to follow the general approach of Green-
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berg et al. (1978). Inspired by Safronov (1969) and Goldreich & Ward (1973), they begin

with kilometer sized planetesimals. The planetesimals experience viscous stirring and

dynamical friction, and evolve by mutual collisions that may be either conglomerative or

destructive. They evolve bodies at 2.7 AU (i.e., with the asteroid belt in mind) until the

largest bodies are ∼ 500 km in size. Their results set up the general outcome of future

simulations; they find that most of the mass remains in the km bodies, they find that the

km bodies do not reach reach the escape speed of the large bodies, but remain quite sub-

escape throughout the growth. The velocity distribution had most bodies super-Hill and

sub-escape to the large bodies, with the largest bodies substantially colder. All of these

results went against the prevailing model of the day, that of Safronov (1969), which had

found a top heavy mass distribution (and consequently that most bodies were roughly

the escape speed of the large bodies).

Subsequent investigations have refined the approach, with better approximations to

the coagulation physics and increased computing power. The macroscopic conclusions

have not substantially changed, however. Wetherill & Stewart (1989) show that the con-

clusions depend on the dynamical friction cooling of large bodies, and the enhancement

of cross sections due to gravitational focussing. Both are necessary to generate the con-

ditions for runaway growth. These conditions were also found by Spaute et al. (1991).

All of these simulations focussed on the terrestrial zone.

Models for the inner terrestrial zone (i.e., the formation of Mercury, Venus, Earth,

and Mars), show eventually the largest bodies isolate themselves, forming “Oligarchs”,

which grow slowly, until most of the mass is in oligarchs (Kokubo & Ida, 1998). As the

damping from the small bodies ends (because they’ve been accreted), the giant impact

phase begins (Lecar & Aarseth, 1986; Chambers & Wetherill, 1998). In this phase, all

of the mass is swept up into a few planets. Such a result matches the overall character

of the terrestrial planets, although not the asteroid belt. The failure to produce planets

in the asteroid belt region is generally ascribed to the action of Jupiter interrupting the
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growth process before the giant impact and cleanup stage (Wetherill, 1992; Petit et al.,

2002).

With the discovery of the Kuiper belt in the early 1990s, similar investigations were

launched into coagulation at Kuiper belt distances. The lower surface densities and

longer orbital periods at greater distances from the central star change the problem

in a quantitative way. Because the relevant timescale may be the age of the Sun, or

the time until the gas disk dissipates, we might expect qualitatively different outcomes.

Perhaps the most canonical “growth of the Kuiper belt” simulation is that of Kenyon

& Luu (1998). Beginning with large bodies of a single size, they found quite similar

outcomes to the runaway growth simulations of the inner solar system. Only a small

fraction of the initial mass, typically of order 10−3, ended up in large (100+ km) bodies.

For Minimum Mass Solar Nebula like initial conditions, there should be ∼ 10M⊕ in

the Kuiper Belt region, so this efficiency produces at ∼ 10−2M⊕ present day Kuiper

belt. Mass at large sizes was distributed roughly equally at all logarithmic sizes. The

largest bodies are typically 103 km in size; the final turnover to planet formation does not

occur at Kuiper belt distances, as the lower surface densities and longer orbital periods

extend the timescale of planet formation beyond the age of the solar system. Subsequent

simulations (Kenyon & Bromley, 2008; Ormel et al., 2010; Schlichting & Sari, 2011) have

reiterated these conclusions.

These conditions match the general character of the trans-Neptunian region today,

and the model was hailed as a great success. The large size end looks like the observed

bodies, and the small bodies are expected to have been removed by collisional processing

(Kenyon & Bromley, 2004b; Pan & Sari, 2005). A loose thread remained in the evidence

that the Cold Classical Kuiper Belt had formed in situ (section 1.2.2), while models of

Neptune’s migration posited an end to the Minimum Mass Solar Nebula at ∼ 30 AU to

stop Neptune’s migration at its current orbit (Gomes et al., 2004; Levison et al., 2008).

Another challenge was raised from the long period binaries, which should have been
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disrupted by the kilometer bodies (Parker & Kavelaars, 2012), had they existed. We

pose a significant challenge in chapter 2, where we show that the bright extrasolar debris

disks cannot be produced by this coagulation model.

1.7 This Work

Extrasolar debris disks around sun-like stars at sun-like ages have as much as ∼ 103 times

the mass in dust as is found in the solar system. Taken alone, it is an interesting question

to ask “Why are these systems so much dustier than the Sun?” The debris disk of the Sun

contains only ∼ 10−1M⊕ in parent planetesimals, which suggests a natural explanation

in more massive debris disks. The question becomes much more urgent in the light of

planetesimal growth models, however, which naturally predict Kuiper Belt like debris

disks should arise from typical protostellar nebulae.

To address this question, we apply a collisional evolution model of debris disks to

a sample of well characterised extrasolar debris disks in chapter 2. By constructing a

pseudo-evolution sequence of massive debris disks using observations of disks at different

ages, we are able to constrain the properties of the parent planetesimal populations. We

find that that these bright extrasolar debris disks are scaled up versions of the Kuiper

Belt, with MMSN like surface densities in parent planetesimals of size 10 ∼ 100 km. This

present a serious challenge to the standard coagulation model, which did not predict such

disks.

Previous to chapter 2, little was known about the properties of the parent planetesimal

populations in debris disks, apart from the Kuiper belt, where the parent bodies could

be observed directly. While coagulation models did not predict the existence of debris

disks with ∼ 10M⊕ in 10 to 100 km objects, expectations had been strongly guided by

the observations of the Kuiper Belt. With our new results in hand, we develop a code

for conducting simulations of coagulation, which we describe in chapter 3. We employ
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this code to simulate the growth of planetesimals in the standard case of kilometer sized

planetesimals. Our model finds similar conclusions to previous models. Coagulation of

large planetesimals at ∼ 40 AU is inefficient, with << 1% of the total mass ending up in

large bodies, for a variety of possible initial conditions. We provide a physical explanation

for the resultant q ∼ 4 power spectrum, and the low efficiency ∼ α.

The fundamental root of the low efficiency is runaway growth. Runaway growth

only occurs when accretion is in the sub-escape but super-Hill regime. Given this, we

investigate whether accretion in the sub-Hill regime could produce the Kuiper Belt from

a much lower starting mass in chapter 4. The key modification in this model is that most

of the mass begins in centimeter sized grains, which are dynamically cooled in mutual

collisions. We include a seed population of kilometer sized planetesimals, which accrete

the centimeter sized grains. In this growth mode, growth is orderly. In this case, growth

can be efficient, and we demonstrated that the Kuiper Belt could have been formed from

a primordial belt with 2 ∼ 3 times the present day mass of the Kuiper Belt. We follow

that up in chapter 5 by applying the same model to extrasolar debris disks. We show

that the same “kilometer plus centimeter” model can produce the parent population of

planetesimals needed to explain the properties of extrasolar debris disks we found in

chapter 2.
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Chapter 2

Planetesimals in the debris disks of

Sun-like Stars

A version of this chapter has been published in The Astrophysical Journal as “Planetes-

imals in Debris Disks of Sun-Like Stars”, Shannon, Andrew, and Wu, Yanqin, Volume

739, Issue 1, article id. 36, 2011 September 20th. It is reproduced here with the permis-

sion of The Astrophysical Journal.

2.1 Background

Dusty disks made up of rocky and icy debris have been observed around other stars, both

in reflected optical light (Smith & Terrile, 1984) and in long wavelength thermal radiation

(Aumann et al., 1984). Multiple surveys have reported that a significant fraction of

main-sequence stars harbor detectable infrared excesses: ∼ 15% solar-type stars (Trilling

et al., 2008; Lawler et al., 2009), and ∼ 30% for A-stars (Su et al., 2006). The infrared

luminosity, when compared to the luminosity of the central star, ranges from ∼ 10−5 to

∼ 10−3. In contrast, the fractional dust luminosity from the Kuiper belt is estimated to

be ∼ 10−7 (Teplitz et al., 1999) and remains undetected. The observed excess luminosities

arise primarily from small (∼ µm − mm) dust grains. Due to their short survival time
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(Artymowicz & Clampin, 1997), these grains are believed to be continuously produced by

collisions between large parent bodies (‘planetesimals’). These planetesimals, analogous

to the Kuiper belt objects in our own system, are in turn left-overs from the epoch of

planet formation.

In this chapter, we describe how we can use debris disks to test theories of planetesimal

formation. We first focus our attention on the primordial size spectrum of planetesimals,

often characterized by a single power-law, dn/ds ∝ s−q, where s is the size. In the

following, we briefly summarize theoretical understandings and observational evidences

for the value of q.

The conventional picture of planetesimal formation is composed of a number of steps.

The formation of the first generation planetesimals is not yet well-understood and is an

area of active research (see, e. g. Youdin & Shu, 2002; Dominik et al., 2007; Johansen

et al., 2007; Garaud, 2007). If these are sufficiently massive, gravity dominates their

subsequent growth (Weidenschilling et al., 1997). At first, objects grow in an orderly

fashion, where collisions and conglomerations occur at rates that are proportional to their

geometric cross sections. But when these bodies become so massive that the effect of

gravitational focusing becomes significant, run-away growth commences where the largest

bodies accrete small planetesimals at the highest rate and quickly distance themselves

from their former peers (Wetherill & Stewart, 1989; Kokubo & Ida, 1996). The run-away

phase is succeeded by the oligarchic phase where individual large bodies are responsible

for stirring the small bodies that they accrete (Kokubo & Ida, 1995, 1998). At the end of

these steps, an entire size spectrum of planetesimals are produced. This is the ‘primordial

spectrum’.

During the run-away phase, N-body simulations have typically produced a slope of

q ∼ 6 (Kokubo & Ida, 1996; Morishima et al., 2008). This slope is naturally explained

if there is energy equi-partition among planetesimals of different sizes (Makino et al.,

1998). Moreover, one expects that the distribution becomes shallower (smaller q) if
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larger planetesimals have higher kinetic energies. This indeed occurs during the oligarchic

phase when all small and intermediate-sized planetesimals are stirred to the same velocity

dispersion. The value of q is then reduced to ≈ 4 (Morishima et al., 2008).

Using particles-in-a-box simulations and later hybrid simulations, Kenyon & Luu

(1999a); Kenyon & Bromley (2004b, 2008) followed the growth of planetesimals. They

also found that q decreases with time after the run-away phase, finishing up with 3.75 ≤

q ≤ 4.5 for planetesimals of sizes between 10 and 1000 kms. Recently, Schlichting & Sari

(2011) argued analytically that a q = 4 spectrum is the natural outcome of conglomera-

tion.

Observational constraints on the value of q currently come exclusively from count-

ing large Kuiper belt objects. Kuiper belt objects larger than about 30 − 50 kms are

commonly believed to be primordial. Collision timescales for these bodies well exceed

that of the Solar system age (Davis & Farinella, 1997; Bianco et al., 2010). The size

distribution for these bodies can be probed by present-day surveys. Published values for

q are scattered: q = 4.0+0.5
−0.6 (Trujillo et al., 2001), q = 4.25 ± 0.25 (Fraser et al., 2008),

q = 4.5 ± 0.4 (Fraser & Kavelaars, 2009) and q = 4.5+1.0
−0.5 (Fuentes & Holman, 2008).

This scatter may be intrinsic and reflect both the different size ranges and the different

dynamical populations emphasized by various surveys (Bernstein et al., 2004; Donnison,

2006; Fraser et al., 2010). For bodies smaller than ∼ 30 kms, the size distribution adopts

a shallower power-law (Bernstein et al., 2004; Fuentes & Holman, 2008; Schlichting et al.,

2009). This break in the power-law index has been argued to be due to collisional erosion

(Pan & Sari, 2005), but a different opinion has surfaced (Charnoz & Morbidelli, 2006).

So at least for the value of q, current coagulation models appear to be vindicated

by the observations. These models enjoy a further success. In the Kuiper belt region,

the solid mass of the so-called Minimum Mass Solar Nebula is ∼ 10 M⊕ (Hayashi, 1981;

Weidenschilling, 1977b), while the mass in large Kuiper belt objects is estimated to be

. 0.1M⊕ (see, e.g. Gladman et al., 2001; Bernstein et al., 2004). This large difference,
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however, is explained by current models where the formation of large planetesimals has

a very low efficiency (Bromley & Kenyon, 2006; Schlichting & Sari, 2011).

With these two remarkable concordances, one wonders if debris disks will ever tell us

anything new and unexpected. Furthermore, every debris disk likely has a different initial

condition and evolves in a different dynamical environment. For instance, dynamical

interactions with Neptune or other planets may have qualitatively affected the evolution

of the Kuiper belt (Levison et al., 2008). It seems difficult, therefore, to extract any

universal truth about the formation process from these disparate objects.

However, based only on a modest sample of debris disks, we argue in this paper that

there is already a serious issue in current coagulation models.

To achieve this, we first construct a simple collisional model (§2.2) to compare against

the set of debris disks reported in Hillenbrand et al. (2008). Our collisional model does

not differ in essence from previous works (Krivov et al., 2005; Wyatt et al., 2007b; Löhne

et al., 2008), but we interpret the observations in a new way. This allows us to measure

the value of q as well as the initial masses of planetesimal belts (§2.4). The latter result

challenges the current models of planetesimal formation (2.5). We summarize in §2.6.

2.2 Model: Luminosity Evolution of a Debris Disk

The debris phase commences when eccentricities of the primordial planetesimals are

further increased so that they no longer coalesce at encounter, but are instead broken into

fragments.1 In this phase, the smallest primordial planetesimals enter into a collisional

cascade first, followed by progressively larger bodies. During the collisional cascade, a

primordial body is broken down into smaller and smaller fragments until all its mass ends

up in small grains. The small grains may spiral in towards the star due to Poynting-

Robertson drag, as happens in the Solar system, or, be ground down by frequent collisions

1Kenyon & Bromley (2008) find that fragmentation begins once Pluto-sized bodies form.
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to sizes so small that they are promptly removed by radiation pressure, as happens in

bright debris disks (Wyatt, 2005).

2.2.1 Debris Rings

We model the debris disk as a single, azimuthally smooth ring composed of planetesimals

of different sizes. The ring is centered at a semi-major axis a with a full radial width

of ∆a and a constant surface density. We take ∆a/a = 0.1 ≪ 1 as our standard input.

This is motivated by the following observations. Spatially resolved debris disks often

appear as narrow rings. Examples are, ∆a/a ∼ 0.1 for AU Microscopii (Fitzgerald et al.,

2007), ∼ 0.5 for HD 10647 (Liseau et al., 2010), ∼ 0.3 for HD 92945 (Golimowski et al.,

2007), ∼ 0.3 for HD 139664 (Kalas et al., 2006), ∼ 0.2 for HD 207129, (Krist et al.,

2010), ∼ 0.5 for ǫ Eridani (Dent et al., 2000), ∼ 0.1 for Fomalhaut (Kalas et al., 2005),

∼ 0.2 for Vega (Su et al., 2005). Similarly, unresolved disks often exhibit spectral energy

distribution that is well fit by a single temperature blackbody (Hillenbrand et al., 2008;

Nilsson et al., 2010; Moór et al., 2011). This ring-like topology (see Thébault & Wu,

2008, for an extensive review) also show up in our own Solar system, hence the name the

asteroid “belt” and the Kuiper “belt”.

2.2.2 Initial Size Distribution of the Planetesimals

We adopt the following power-law forms for the initial size distributions,

dn

ds

∣

∣

∣

∣

t=0

∝















s−q3 ssmall < s < sbig,

s−q1 smin < s < ssmall.

(2.1)

The index q3 is the primordial size index for large bodies, like one that arises out of

conglomeration models. Previous studies of collisional debris disks have taken this value

to be a given, in fact it is commonly set to be the power law one expects from collisional

equilibrium (Krivov et al., 2005, 2006; Wyatt et al., 2007b; Löhne et al., 2008). In
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contrast, in this contribution we use the observed sample to measure this value.

In equation 2.1, sbig is the size of the biggest planetesimals, smin the smallest. The

intermediate size ssmall is introduced for the purpose of mass accounting (see below): the

original mass counts only those between ssmall and sbig,

M0 =

∫ sbig

ssmall

4π

3
ρs3 n3s

−q3 ds. (2.2)

While smin is naturally taken to be the size at which radiation pressure unbinds dust

grains from the star ( ∼ µm for a Sun-like star), we discuss our choice for sbig and ssmall

below.

Motivated by the observational and numerical results discussed in §2.1, we investigate

values of q3 between 3.5 and 5. The value q3 = 4 has the special property that mass is

distributed equally among all logarithmic size ranges, while masses in systems with q3 > 4

diverge toward the small end. The intermediate size ssmall is introduced, partly to avoid

dealing with this divergence. For sizes below ssmall, we assume that collisions have set

up an equilibrium power law with index q1 (q1 = 3.6 for the hard-strength law, see

Appendix). So sizes below ssmall contributes little to the total mass. The intermediate

size ssmall can also be interpreted as the collisional break size at time zero. We set

ssmall = 100 m. For our typical disks, collisional equilibrium is established within a few

million years for bodies up to a size ∼ 1 km. So the choice of ssmall is not important for

late time evolution.

The choice of size for the largest bodies, sbig, deserves some discussion, as it affects

the qualitative character of the evolution. As a collisional cascade progresses, bodies of

larger and larger sizes come into collisional equilibrium, opening up fresh mass reserve to

produce the small particles. Once the largest bodies enter into collisional equilibrium, the

dust production rate decays with time as LIR ∝ t−1 (Wyatt et al., 2007a). Two previous

studies (Wyatt et al., 2007b; Löhne et al., 2008) have adopted sizes for the largest bodies

of sbig = 30 and 74 km, respectively. For some of their disks, the largest bodies can enter

collision equilibrium during the lifetime of the system.

40



Both Kuiper belt observations and numerical studies of coagulation favor a largest

size of ∼ 1000 km. The largest object yet found in the Kuiper Belt, (136199) Eris, has

a radius of 1200 ± 50 km (Brown et al., 2006). In the simulations of Kenyon & Bromley

(2004a), coagulation of planetesimals at 30 - 150 AU produces bodies as large as 1000

- 3000 km. When the largest bodies reach this size, self-stirring increases the velocity

dispersion and collisions become destructive rather than conglomerating.

Therefore, we adopt a maximum body size of 1000 km in our study. Our quoted

masses reflect this choice of sbig. Our largest bodies never enter into collisional equilib-

rium. If this assumption turns out to be erroneous, namely, sbig is much smaller and

enters into collisional cascade within system lifetime, our model would underestimate the

initial masses for old disks. As a result, we would overestimate the value for q3.

2.2.3 Collisions

We only consider collisions that are catastrophically destructive. A catastrophic collision

is defined as one that removes at least 50% of the mass of the primary body. In so doing,

we have implicitly assumed that both cratering collisions and conglomerating collisions

are unimportant. When a destructive collision occurs, the total mass (bullet plus target)

is redistributed to all smaller sizes according to dn/ds ∝ s−4. This choice is somewhat

arbitrary and we have confirmed that modifying it (within reasonable bounds) does not

change our results.

We do not model evolution of the orbital dynamics as bodies collide. This is justified

by the discussions in §2.5.2.

Let the frequency of collisions between two bodies of sizes s and s′ be,

fcollision =
π (s + s′)2

2πa∆a torb
. (2.3)

Here, 2πa∆a is the surface area spanned by the debris ring in the orbital plane, and torb

is the orbital period. Gravitational focusing is negligible for the high random velocities

41



we consider here. The typical encounter velocity, for particles with eccentricity e and

inclination i, is (Wetherill & Stewart, 1993)

vcol =
√

1.25e2 + i2 vkep, (2.4)

where vkep is the local Keplerian velocity. We adopt i ≈ e/2 so vcol ≈ 1.32 e vkep. As

argued in §2.5.2, it is reasonable to assume a constant eccentricity (and inclination) for

all bodies. We take a value of e = 0.1 as the standard input and discuss this assumption

in §2.5.

We denote the specific impact energy required to catastrophically disrupt a body

(target) as Q∗. The scaling of Q∗ with the size of the target depends on whether its

strength is dominated by material cohesion or self-gravity. We adopt the following form

(Benz & Asphaug, 1999),

Q∗ = A
( s

1 cm

)α

+ Bρ
( s

1 cm

)β

, (2.5)

where ρ is the bulk density which we take to be 2.5g/cm3. The first term on the right-

hand-side describes the internal strength limit, important for small bodies, while the

second term the self-gravity limit, important for larger bodies.

The strength law sets the size of the smallest bullets required to destroy a target.

Since these are also the most numerous, they determine the downward conversion rate of

mass during a collisional cascade. As such, the power indexes in the strength law directly

determine the size spectrum at collisional equilibrium. For a strength law of the form

Q∗ ∝ sc, the equilibrium size spectrum is dn/ds ∝ s−q, with (Durda & Dermott, 1997):

q = (21 + c)/(6 + c). (2.6)

The famous Dohnanyi-law (Dohnanyi, 1969), dn/ds ∝ s−3.5, obtains from c = 0.

The value and form for Q∗ are notoriously difficult to assess. It depends on, among

other factors, material composition, porosity and impact velocity. A number of compu-

tations and compilations have appeared in the literature. We select three representative

formulations for our study (Fig. 2.1).
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Based on a variety of experimental data and SPH simulations, Krivov et al. (2005);

Löhne et al. (2008) advocated the following choices, A = 2 × 107erg/g, α = −0.3,

B = 0.158, β = 1.5. We call this the ’hard’ strength law. In this case, the collision

spectrum satisfies q ≈ 3.6 and 3.0, in the strength and gravity regimes respectively.

Based on energy conservation, Pan & Sari (2005) calculated a destruction threshold

for bodies that have zero internal strength and obtained B = 3.3 × 10−8, β = 2. So

bodies at 100km is weaker by a factor ∼ 1000 than their counterparts in the Krivov et al.

(2005) formulation. We refer to this as the ’soft’ strength law. A softer strength implies

smaller bullets and therefore more frequent destruction of the targets. Pan & Sari (2005)

did not consider smaller bodies that are strength bound. We adopt A = 2 × 107erg/g

and α = −0.3 in this range to complete the soft prescription.

Stewart & Leinhardt (2009) proposed a strength law that depends on impact velocity,

Q∗ =
(

500 s−0.33 + 10−4 s1.2
)

v0.8
col . (2.7)

For a typical velocity vcol = 500m/s and for bodies greater than 1km, this gives rise to

a strength law that falls in-between that of the hard and the soft case. We call this the

medium strength law.2 Note that this strength law is much weaker than the other two

for small bodies.

For the strength laws we consider, transitions from material strength domination to

self-gravity domination occur at size s ≈ s1, with s1 ranging between 100 m (the hard

and the medium laws) and 10 km (the soft law).

2.2.4 Luminosity Evolution

The planetesimal disk, starting from an initial disk mass of M0, and an initial size spec-

trum (eq. 2.1), is numerically collided and ground down. We divide the particles between

2We thank P. Thebault for pointing out that the definition of critical energy in that work differs
slightly from our use here, but the difference disappears when the impactor is much smaller than the
target.
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Figure 2.1: Prescriptions for specific strength from Löhne et al. (2008), Pan & Sari (2005)

and Stewart & Leinhardt (2009), plotted here as functions of target sizes. We insert an

impact velocity of 500m/s to evaluate the last prescription. Strength of small bodies are

dominated by material cohesion, while that of larger bodies by self-gravity. Transitions

between the two limits occur around 100 m (the hard and the medium laws) or around

10 km (the soft law). Strength for bodies smaller than 1cm are extrapolations as both

laboratory and numerical experiments only concern bodies of larger sizes.

ssmall and sbig into 500 equal logarithmic size bins. The time-step for the simulations is

adaptively set so that over one time-step, the maximum mass gain (from larger bodies)

or loss (to smaller bodies) per bin falls below 5%. The net mass change is substantially

smaller than this due to the cancellation between gain and loss.

We calculate the fractional brightness of the dust disk, LIR/L∗, by integrating the

geometrical cross section over all grains. This assumes that grains are perfect absorbers

at the optical and can emit efficiently in the infrared.
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Figure 2.2: Time evolution of the break-size in a model system, with M0 = 12.4M⊕, q3 =

4.0, e = 0.1, a = 31AU, and ∆a/a = 0.1. Here, break-size is defined as the size at which

all bodies initially at that size have encountered of order one destructive collision. Break

size increases with time monotonically as larger bodies enter into collisional cascade.

The numerical results are shown as solid curves, while the analytical scaling relations

(see Appendix) are plotted as dashed lines. The bends in the curves occur at s ≈ s1,

where s1 is the size for which material cohesion and gravity binding are equal. The set

of thick curves are for the case of hard material strength, while the thin lines for soft

strength.

An example of such a calculation is reported in Figs. 2.2 & 2.3. To understand

these results, a simple analytical model (see Appendix) is introduced. Scaling relations

obtained using this analytical model compares well with our numerical results.
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Figure 2.3: Evolution of fractional luminosity, LIR/L∗, for the system in Fig. 2.2. The

solid line is obtained using the hard strength law, and the dashed line the soft one.

The evolution proceeds in two stages: the flatter early stage when collisional cascade

only involves small bodies that are bound by material cohesion; and a steeper later stage

where bodies bound by self-gravity enter the cascade. At late times, fractional luminosity

decays as t−0.5 (eq. 7.9, also see Fig. 7 of Löhne et al., 2008). While break-sizes differ

for the two adopted strength laws (Fig. 2.2), this appears to have little influence on the

overall luminosity. The dotted curve presents results using the hard strength law, but

with the collisional debris distributed as dn/ds ∼ s−2, as opposed to our usual −4 case.

The luminosity evolution is similar, aside from a constant offset. Also see figure 2.7,

panel 1.
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Fig. 2.2 shows that, with time, larger and larger planetesimals enter into collisional

cascade. Within a million years or so, the cascade has advanced to size of order one

kilometer. Beyond this time, bodies bound by self-gravity can be gradually eroded. By

1 Gyrs, bodies with sizes 10− 100 kms may be affected. The exact value depends on the

strength law. The dust luminosity is related to the dust mass, which is in turn related

to the dust production rate. The dust production rate, on the other hand, is roughly the

primordial mass stored around the break-size divided by the system age. If the primordial

spectrum is such that a large amount of mass is initially piled at the large end, debris

disks would not exhibit significant fading even up to a few billion years.

Fig. 2.3 shows that dust luminosity LIR/L∗ ∝ t−0.5 for q3 = 4, consistent with equa-

tion 7.11. This result has previously been obtained, both numerically and analytically, by

Löhne et al. (2008). That same equation also demonstrates that the value of B, strength

constant for bodies bound by self-gravity, affects the luminosity only minorly. This is

born out by results shown in Fig. 2.3.

An important result on which we base our later analysis is shown in Fig. 2.4. Lumi-

nosity evolution for disks with the same initial mass but different q3 are depicted. As eq.

7.9 predicts, L ∝ t(q3−3)/(2−q3) (also see Löhne et al., 2008). If q3 is shallow (e.g. q3 ≤ 4),

most of the initial mass is deposited at the largest planetesimals. This mass reservoir

is harder to reach by collision and allows the disk to remain brighter at later times. In

comparison, disks with a steeper q3 decay faster.

If one observes a collection of debris disks all at the same age, intrinsic scatter in,

e.g., initial masses, makes it impossible to differentiate between models of different q3.

However, a collection of disks with a large age spread can be used to constrain q3. This

we proceed to demonstrate.
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Figure 2.4: Luminosity evolution for disks with different q3 but the same initial mass

(8M⊕). Systems with a steeper primordial size spectrum (larger q3) exhibit a more

pronounced decline of luminosity with time, since at a given time, a bigger fraction of

their mass reservoir has been depleted. Systems with shallower q3 (e.g., q3 = 3.5), on

the other hand, are initially dimmer due to the relative shortage of smaller rocks, but

eventually outshine the higher q3 disks as they can hold on to their mass reservoir for

longer. The luminosity decay of observed disks that span a large range of ages can thus

be used to infer the value of q3. All other parameters here are similar to those used in

Fig. 2.3 and we adopt the hard strength law.

2.3 Observed Ensemble

Several debris disks surveys have been carried out (see, e.g. Su et al., 2006; Trilling et al.,

2008; Lawler et al., 2009; Moór et al., 2011). The sample of most interest to us is that
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reported in Hillenbrand et al. (2008). Together with updates in Carpenter et al. (2009),

Hillenbrand et al. (2008) presented a collection of debris disks around F/G/K type stars,

obtained as part of the Spitzer program on Formation and Evolution of Planetary Systems

(FEPS). This sample is unique in that both the stellar age and the radial distance of the

dust ring are determined: isochrone fitting provides the age for the host stars (spanning

from ∼ 107 years to a few 109 years),3 while multi-band photometry and spectral energy

fitting yield the semi-major axis of the dust ring. Together with fractional luminosity

of the dust belt, these provide the most important constraints to infer the primordial

properties of parent planetesimals.

To obtain the blow-out size (smin) for each system, we take luminosity values for

the central stars as given in (Hillenbrand et al., 2008), and we assign stellar masses by

assuming that M∗ ∝ L
1/3
∗ , as appropriate for solar type main-sequence stars.

Out of the 31 disks listed in Hillenbrand et al. (2008), we focus only on a sub-sample

of 13 disks that appear radially unextended and are around main-sequence stars. In Hil-

lenbrand et al. (2008), emission from each disk is initially fitted with a single temperature

blackbody (a ring). If agreement between the 24µm/33µm fit and the 33µm/70µm fit is

poor, they argue that the disk is likely radially extended and fit the data instead with

two radial components. Since our numerical model is a one-zone model, we find that

including the extended sources into our analysis causes significant scatter in the results.

This leads us to discard them for the current analysis. We have excluded HD 191089

from our sample. Its fluxes in 13 µm and 33 µm are not measured, and cannot be reliably

identified as an unextended source. In all, we are left with 13 sources.

It is interesting to note that most of the extended sources are relatively young, all

younger than a few hundred million years. In contrast, the unextended sources have a

larger age spread, lasting till a few billion years (Fig. 2.5). All systems may be born

3In this work, we assume that the duration of the debris phase in every system is the same as the
stellar age. We return to justify this assumption in §2.5.4.
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System Age (yr) log L∗

L⊙
log LIR

L∗
a (AU)

HD 6963 109 -0.26 −4.0 18

HD 8907 108.5 0.32 −3.6 49

HD 25457 108.0 0.32 −4.0 23

HD 31392 109.0 -0.26 −3.6 24

HD 35850 107.5 0.25 −4.5 15

HD 72905 108.0 -0.04 −4.7 7

HD104860 107.6 0.12 −3.2 42

HD 122652 109.3 0.18 −3.9 31

HD 145229 108.8 -0.02 −3.9 26

HD 150706 108.8 -0.02 −4.3 23

HD 187897 109.1 0.10 −4.0 43

HD 201219 109.0 -0.16 −3.9 23

HD 209253 108.0 0.21 −4.1 20

Table 2.1: Debris disks selected from Hillenbrand et al. (2008) for our analysis. Semimajor

axes are calculated assuming small grains are blackbody radiators. A more realistic model

of grain emission would find the disks reside at larger semimajor axes; however, the

qualitative conclusions of this investigation should remain robust to a uniformly outward

shift in semimajor axes.
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with more than one debris rings, but after a sufficiently long time, only the outermost

ring, which has the longest erosion timescale, remains shining. The extended system are

also brighter than the average, likely related to their relative youth.
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Figure 2.5: Cumulative distribution of stellar age (left panel) and dust luminosity (right

panel) for the Hillenbrand et al. (2008) sample. The extended systems (solid curve) tend

to be younger and brighter than the unextended systems (dashed curves).

2.4 The Primordial Size Spectrum Revealed

We have a simple strategy. Knowing the luminosity, the age and the semi-major axis of

each debris ring, we use our collisional model to infer its initial mass of planetesimals

by searching for the initial mass that produces the observed luminosity at the current

age. These initial masses, when plotted against system ages, should show a spread. A
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Figure 2.6: Inferred disk initial masses, plotted against system ages, for the unextended

systems in Hillenbrand et al. (2008). The four panels present four different choices of q3.

The other parameters chosen are e = 0.1, ssmall = 104cm, and ∆a/a = 0.1. A value of

q3 ∈ [3.5, 4.0] is preferred: the upper envelopes for the disk mass remain constant at all

ages in the two top plots. Models with higher q3 are excluded as they require a rising

upper envelope. In addition, the q3 = 5 model requires unphysically large disk masses

for very old disks.
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Figure 2.7: Similar to Fig. 2.6 except q3 is fixed at 4 and a number of parameters

are varied to test how the inferred initial masses depend on them. Specific values for

the inferred mass may change, when the redistribution pattern for the collisional debris

(dn/ds ∼ s−qd , top-left), the eccentricity of particles (bottom-left), the fractional width

of the debris ring (top-right), and the adopted strength law (bottom-right) are varied

for all systems. These changes are mostly described by equation 7.11. However, the

important indicator for our study, the upper envelope of the masses as a function of

system age, remains flat. So the conclusion that q3 ∼ 4 is insensitive to the choice of

these parameters.
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spread in initial mass is expected as these disks have intrinsically different formation

environment and history. However, the spread should be invariant with regard to stellar

age, as disks formed at different cosmic times likely have the same initial distribution of

disk properties. This simple assumption underpins our work.

We will be using this invariance to identify the correct model. However, using the

spread itself is difficult due to selection effects. For instance, low mass disks may become

too dim at late times to be observable. So we propose instead to study the upper envelope

of this spread. If the spread is uniform across time, its upper envelope should also be flat

with age for the correct model. In the following, we show that the model parameter most

affecting the slant of the upper envelope is q3, the power-law index in the primordial size

spectrum.

The central figure of this chapter is Fig. 2.6 where we plot the inferred initial disk

masses as functions of stellar age. Focusing only on the most massive systems, their

inferred masses appear to slope differently with time for different q3, the power-law index

in the primordial size spectrum. Models with q3 = 4.5 or greater have upward rising

upper envelopes and are therefore excluded by the data. Models with q3 smaller than 3.5

lead to a decreasing initial mass with system age and are excluded as well. Only models

with q3 between 3.5 and 4 survive the test.

Our model employs a number of other parameters, such as the radial position and

extent of the debris ring, the dynamical excitation and break-up strength of the particles.

We have studied the robustness of our results when these parameters take different values.

(Fig. 2.7). Changes in the inferred initial masses are largely explained by equation 7.11.

The important message is that, as long as the values for these parameters remain constant

over age, their exact values do not affect our conclusion on q3. The assumption that the

dynamical excitation is constant over age is suspicious, in light of results from coagulation

models showing that stirring by large plantesemals increases gradually eccentricities of

the disk particles. This is discussed in §2.5.
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There is significant uncertainty in our conclusion due to the small sample size. How-

ever, we argue that a larger sample may still not favor models with, e.g., q3 = 5. If q3 = 5

(lower-right panel in Fig. 2.4), the system that remains easily detectable at 2 Gyrs of age

requires an initial solid mass of ∼ 200M⊕ ∼ 1MJ in the planetesimal belt. The initial

gas mass in such a belt will be higher than the total disk mass of a typical T-Tauri star

(0.01M⊙).

By focusing on dust luminosities, we are sensitive only to bodies that lie below the

break-size. As seen in Fig. 2.2, break-size marches up to few tens to a hundred kilometers

by the end of a few billion years, if the disk has a mass of M0 = 12.4M⊕.

2.5 Discussions

2.5.1 Coagulation Models vs. Debris Disks

In our exercise, we have assumed a simple initial size distribution (eq. 2.1), with all

bodies larger than a few hundred meters described by a single power law index q3. We

relax this assumption here.

Simulations of planetesimal coagulation produce typically more complicated size dis-

tributions. For example, Kenyon & Bromley (2008) started their simulations with all

bodies at ≤ 1 km. After tens of millions of years of growth, most of the mass still remains

at or below 1 km, with only ∼ 8% of the mass being accreted into bodies 10 km or larger,

∼ 6% into bodies 100 kms or larger, and ∼ 3% into bodies of order 1000 kms.4 We use

a broken power-law to replicate this kind of primordial spectrum. We set q3 = 5.5 from

1 km to 10 km, and q3 = 4 from 10 km to 1000 km. Motivated by Schlichting & Sari

(2011), we also consider a slightly different initial distribution with q3 = 7 from 1 km to

10 km, and q3 = 4 from 10 km to 1000 km. Both sets of size spectrum deposit mass

4Even at 10 Gyr, the same model predicts that no more than a few percent of the initial mass wind
up in large planetesimals.
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Figure 2.8: Inferred initial masses for a broken power-law size-distribution. We investi-

gate two particular forms, motivated by coagulation simulations by Kenyon & Bromley

(2008) and Schlichting & Sari (2011), respectively. Other parameters adopted are e = 0.1,

∆a/a = 0.1, and the hard strength law. The inferred disk mass rises sharply with system

age. Moreover, to make old and bright systems, we require disk masses that approach

the mass of Jupiter.

mostly at the low end (≤ 1 km) and little at the large sizes. As expected, when initial

masses are determined for different systems (Fig. 2.8), we find that young systems re-

quire exceedingly low initial masses, while old systems require unphysically large initial

masses.

If we follow the luminosity evolution of such a disk, we will see that the disk flares

brightly in the first tens of millions of years, due to the large mass reservoir at the 1 km-
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range. Then the luminosity decays as t−1/2 (as expected of a q3 = 4 spectrum) but with

a low normalization – most of the disk mass has been ground down in the early stage and

we are now left with but a scrap remnant of the original. Conglomeration simulations

typically find that only a small fraction of the mass can be accreted to make large bodies,

before viscous stirring effectively stalls the growth. Schlichting & Sari (2011) showed that

the fraction in large bodies can only be of order 10−3 in Kuiper-belt-like environments.

Does results in Fig. 2.8 allow us to exclude current conglomeration models? One

possible caveat in our analysis is the eccentricity. We discuss this below.

2.5.2 Eccentricity

We assume a static, high eccentricity (e = 0.1) for all systems at all times and ignore

eccentricity evolution due to collisional cooling and dynamical excitations. In realistic

systems, eccentricities may be functions of time and particle size. How does this impact

our conclusions?

One possible cause of eccentricity evolution is collisional cooling. Collisions dissipate

energy, so collisional products have in average lower velocity dispersion than their parent

bodies. In a single collision, two bodies with masses m1 and m′
1 (assume m1 ≫ m′

1)

impact with typical random velocities

v1 ∼ v′
1 ∼ e1 vkep, (2.8)

where the subscript 1 indicates that this is a first generation collision in our counting. As-

suming maximum collisional cooling where all collision debris fly away from the collision

site with the velocity of the center-of-mass, i.e., all relative velocities in the center-of-mass

frame is dissipated during the collision, dispersion velocity in the debris is now reduced

to

v2 ∼
√

m2
1v

2
1 + m′2

1 v′2
1

m1 + m′
1

∼ v1

(

1 − m′
1

2m1

)

. (2.9)

57



So the closer in mass the two colliding bodies are, the more cooling their debris experi-

ences. The ratio of the two masses depends on the material strength as well as the impact

velocity (eq. 7.2). For e = 0.1 and the hard strength law, this mass ratio is evaluated to

be 0.006 for meter-sized boulders and 0.025 for cm-sized grains, respectively. Collisional

cooling is negligible until near the blowout size.

Integrating the collisional cooling suffered by sucessive generations (mostly contributed

by the small end), we find that collisional cascade can proceed all the way to blowout size

as long as the initial eccentricity e ≥ 0.13 for the hard strength law (or e ≥ 0.02 for the

medium strength law). We confirm this using a code which explictly includes collisional

damping. In other words, for the e = 0.1 case we study, one can ignore collisional cooling.

This conclusion is further strengthened when one considers viscous stirring by large

planetesimals. For the massive disks we consider here, the stirring can typically resupply

eccentricity faster than collision can remove it. Eccentricity evolution is dominated by

viscous stirring and eccentricity is largely size-independent. 5

Over time, stirring gradually raises the eccentricity of all bodies as e ∝ t1/4 (c.f.

Goldreich et al., 2004b). In the simulations of Kenyon & Bromley (2008), planetesimals,

stirred by Pluto-like bodies, reach e ∼ 0.1 at about a Gyr.6

Our inferred large body masses are orders of magnitude greater than that in their

simulations so an eccentricity of 0.1 can be reached much earlier. Fig 2.9 shows that,

even for a slowly rising eccentricity of the form e = 0.1(t/1 Gyr)1/4, our estimates for

disk masses remain largely unchanged.

In conclusion, we believe that collisional cooling is not important during the debris

phase, and that we are justified in adopting a constant, high value of e = 0.1.

5Moreover, the condition for a successful collisional cascade is now reduced to e ≥ 0.05 for the hard
strength law (and e ≥ 0.01 for the medium strength law). These constraints correspond to the minimum
random motion necessary to break up the hardest grains (the smallest ones). They can be reduced by
a factor of unity when radiation pressure on small grains are considered (Thébault, 2009).

6An eccentricity of e ∼ 0.3 at 40 AU corresponds to the surface escape velocity of Pluto. Planetesimals
have to have a near-surface encounter before they can reach such a high eccentricity.
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Figure 2.9: Same as the top-right panel in Fig. 2.6 but instead of a constant eccentricity

(e = 0.1), here we assume that the eccentricity rises as e(t) ≈ 0.1(t/109yrs)1/4. There

is little difference to the inferred mass, and if anything, the data seems to argue that a

q3 = 4 model slightly overestimate the value of q3. So our conclusion that q3 ∈ [3.5, 4]

remains unchanged even considering eccentricity growth.

2.5.3 Radial Optical Depth

During the review process, the refreee pointed out that a debris disk with a radial optical

depth greater than unity can sustain a large infrared luminosity over longer times. This

may then invalidate much of the conclusions drawn here.

Here we have studied disks with an eccentricity (and inclination) of order 0.1. For

these disks to be radially optically thick, the fractional optical/IR dust luminosity will

be of order 0.1, about 100 times brighter than the brightest systems known. Conversely,
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if the radial optical depth is indeed unity or greater, the true eccentricity/inclination will

have to be about 100 times lower than our assumed values. With such a low excitation,

collisions may well be conglomerative as opposed to destructive (see Fig. 2.1). In partic-

ular, it will be difficult to destroy micron-sized grains. And even if this issue is overcome,

there are theoretical problems with optically thick disks: continuous grind-down without

a mass exit will lead to rise of the optical depth with time; collisional cooling will be

increasingly effective; and small bodies will be accreted by large rocks can as opposed

to being ground down. We therefore suggest that a debris disk with a larger-than-unity

radial optical depth may not exist.

2.5.4 Age of the debris disk = Age of the star?

As pointed out by our referee, our results in this paper relies critically on our implicit

assumption that the duration of the debris disk phase is the same as the age of the

star. There are at least two reasons to question this assumption. First, conglomeration

models (Kenyon & Luu, 1999a; Kenyon & Bromley, 2001) typically require a few 107

years to produce Pluto-like bodies in Kuiper-belt-like environment, with the timescale

increasing as one moves away from the star.7 This will delay the onset of the debris

phase. Second, some models associate the onset of debris disks with “Delayed Stirring”

(Dominik & Decin, 2003; Mustill & Wyatt, 2009), and associate their disappearance with

dynamical clearing (Fernandez & Ip, 1984; Habing et al., 1999; Raymond et al., 2011),

thereby suggesting that debris disks may be a transient phenomena.

However, both of these theoretical arguments rub against current observations.

The youngest debris disks we observe are at a few Myrs old (Hernández et al., 2006).

The disks peak in brightness around 10-15 Myrs, and decay slowly after that (Currie

et al., 2008). Whether self-stirring or external stirring is responsible for the onset of debris

disks, this occurs soon after the stars are born. One possibility is that small planetesimals

7We note, however, that none of our systems is younger than 30 Myrs.
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enter the debris disk phase well before the largest bodies have finished forming (Kenyon

& Bromley, 2008). The other possibility, as we will argue below using an independent

line of evidence, is that the standard conglomeration theory today requires significant

modification.

Dynamical instability of giant planets may excite the velocity dispersion of planetes-

imals and jump start the debris phase. If the debris phase lasts of order the stellar

lifetime, our conclusion remains unchanged. But what if the debris phase lasts only a

small fraction of the stellar lifetime and we happen to detect them when they are turned

on? The fraction of stars that harbor bright disks at any age should then be of order the

disk duration divided by the stellar age, in contradiction with the observations that the

fraction of detectable disks is ∼ 15% for stars of all ages (Trilling et al., 2008). Dynamical

ejection of the plantesimals by planets, on the other hand, can explain why some stars

are so dust poor.

2.6 Summary

Using an ensemble of bright debris disks around Sun-like stars, we have inferred the

size spectrum of their embedded planetesimals. We parametrize the size spectrum as

dn/ds ∝ s−q3 and find q3 ≈ 3.5 − 4, where q3 = 4 corresponds to equal mass per

logarithmic decade. The planetesimal sizes our technique probes lie between a couple

kms to ∼ 100km.

While this size spectrum is consistent with the size spectrum of large planetesimals

arising from coagulation simulations (q3 ∼ 4), there are two lines of evidence that suggest

problems in current coagulation models.

The first line of evidence is related to the inferred disk mass. The inferred initial

masses for these bright disks are surprisingly high. We find total masses reaching as

61



high as 10M⊕.8 This is comparable to the total solid mass in the Kuiper belt region of

Minimum Mass Solar Nebula model, and about a factor of 100 higher than the mass in

large Kuiper belt objects. Current coagulation models require an MMSN-like total mass

to produce the observed density of large Kuiper belt objects. If the same inefficiency

persists for our disks, one would require a total disk mass of ∼ 100 MMSN to produce

those embedded planetesimals. This is difficult to imagine.

The second line of evidence regards the luminosity evolution. Current coagulation

models are highly inefficient in making large planetesimals. So most of the mass remains

at where they started, presumably ∼ 1 km. This leads to debris disks that are too bright

at early times, reaching larger than unity radial optical depth, and that are too dim by

a couple orders of magnitude at late times.

We do not believe these discrepancies can be resolved by relaxing some of our model

assumptions. In particular, we argue that our estimate for q3 is unchanged even taking

into account the fact that disk eccentricity may rise with time.

Our results are also insensitive to the width of the debris ring, to the strength of

bodies, and to the assumed upper and lower sizes.

Because we restrict our attention to the upper envelope of inferred masses, our result is

dominated by a handful of systems. Our analysis may be vulnerable to errors. However,

the presence of bright debris disks even at a few billion years is firmly established by

current observations. This alone dictates that there ought to be a significant amount of

mass stored in large (10-100 kms) planetesimals. We address how this is accomplished

by revisiting coagulation model in chapters 4 and 5.

8This is for q3 = 4, and even higher values are required if q3 = 3.5.
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Chapter 3

Collisionally Undamped

Conglomeration

This chapter is a modified version of a draft publication. The research was done in

conjunction with Dr. Yanqin Wu, and Dr. Yoram Lithwick, and the preparation of the

chapter was done in conjunction with Dr. Yanqin Wu. It is reproduced here with their

permission.

3.1 Background

We now know that solid bodies, ranging from a few kilometers to a couple thousand

kilometers, roam in the outskirts of both the solar and many extrasolar systems. In the

case of the solar system, Pluto, Sedna and other large Kuiper belt objects are directly

detected (Slipher & Tombaugh, 1930; Jewitt & Luu, 1993; Brown et al., 2004; Schlichting

et al., 2009); and in the case of extrasolar ones, these bodies are inferred from the dust

grains that are produced during their mutual collisions. Even a small amount of dust can

intercept enough star light to become detectable as debris disks (Smith & Terrile, 1984;

Wyatt, 2008). Surprisingly, ∼ 20% of solar analogs harbor dust disks that are brighter

than ours by more than three orders of magnitude (Meyer et al., 2007).
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How do these bodies form? Are they an intermediate step in the formation route for

planets? Why are they not incorporated into Earth or even Neptune-like planets? Why

are many exo-debris disks so bright yet ours so anemic? These are the questions we set

out to answer.

The conventional picture for the formation of (our own) Kuiper belt (Kenyon & Luu,

1998; Ormel et al., 2010; Schlichting & Sari, 2011) postulates that there were ∼ 10 Earth

masses of primordial rock and ice (∼ solid mass in the Minimum Mass Solar Nebulae),

and only ∼ 10−3 of this mass conglomerated into the large Kuiper belt bodies we see

today. The rest was somehow removed. This extremely low efficiency occurs because,

theorists argue, as bodies like Pluto grow, they stir the orderly orbital motion of the seed

material to such an extent that the latter can no longer be accreted quickly into large

bodies: Plutos starve themselves.

However, there is a serious issue with this paradigm: the exo-debris disks are too

bright. The total mass in their large Kuiper belt bodies must be ∼ 1000 times that

in our own system (chapter 2). According to the conventional picture of Kuiper belt

formation, this would have required ∼ 104 Earth masses of primordial solid, some 100

times more than the value expected in a minimum mass solar nebula. The low efficiency

problem is further exacerbated if many Pluto-like large bodies were scattered away by

giant planets, as some theories of Neptune migration maintain (Stern, 1991; Levison

et al., 2008).

Instead, we start exploring along a different route, stimulated by the theoretical pro-

posal of Goldreich et al. (2004b) (hereafter GLS). Different from all previous works (e.g.,

Safronov, 1969; Greenberg et al., 1978; Wetherill & Stewart, 1989; Kenyon & Luu, 1998;

Kenyon & Bromley, 2008; Ormel et al., 2010; Schlichting & Sari, 2011), we model the

plantesimals as being so small that their mutual collisions are dynamically important. In

this picture, as seed materials are stirred up their destructive collisions grind them down

to smaller debris. Smaller seeds collide much more frequently than larger ones and their
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relative velocities remain low. This collisional cooling continuously guarantees efficient

accretion by large bodies, until almost all mass has been converted to large bodies. Such

a picture will allow the in situ formation of the cold classical Kuiper belt (chapter 4),

and explain the high mass in the bright exo-debris disks (chapter 5).

In this chapter, however, we restrict ourselves to the conventional case of no collisional

cooling. There are three purposes to this chapter. One is to document our numerical

algorithm and certify its various components against theoretical expectations. This code

already contains collisional break-down and cooling but these are unimportant here since

we adopt large initial sizes for the planetesimals (∼ 1 km). The second purpose is to

compare the results from our code against previous works. In particular, Schlichting

& Sari (2011, hereafter, SS11) have recently proposed a simple explanation for the size

distribution of Kuiper belt bodies, in the case of collisionless conglomeration. We examine

this claim critically. Lastly, our results here highlight one serious plight of all collisionless

conglomeration models: extreme inefficiency. Starting with a plantesimal disk of a mass

of ∼ 10M⊕ (similar to that expected in a MMSN disk extrapolated to the Kuiper belt

distance, Weidenschilling (1977b); Hayashi (1981)), only ∼ 10−3 of the mass can be

incorporated into large bodies that one observes today.

3.2 The Conglomeration Code: Component Testing

We adopt a particle-in-a-box approach (Safronov, 1969) to study the interactions of

plantesimals and their growth. The range of body sizes we track runs from ∼ km to

∼ 103 km (and even larger when we consider grains as small as 1µm in the future). The

total number of particles active in our simulations can exceed 1015 or more. We typically

simulate the system for up to 106 dynamical times. These factors necessitate a statistical

approach where particles with similar properties (mass, eccentricity, inclination, semi-

major axis) are grouped into the same bin. We do not yet have the capability of coupling
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N-body integrators with the statistical code, as was done by Bromley & Kenyon (2006);

Kenyon & Bromley (2008); Glaschke (2006). As such, we fail to capture the evolution

correctly when only a few large bodies dominate the dynamics.

3.2.1 Particles and Bins

A total of six parameters are needed to specify an orbit, the semi-major axis a, the

eccentricity e, the inclination i, the argument of periapse ω, the longitude of the ascending

node Ω, and the mean anomaly M . Together with mass, each particle should be described

by seven parameters. This is computationally prohibitive and approximations are in

order. In the following we explain the simplifying assumptions we make in this code.

We adopt a single-value of semi-major axis (a = 45AU) for all particles, spread to a

width ∆a ∼ 0.13a ∼ 6 AU. Our single zone approach limits us to study systems where

the eccentricities are small (e < ∆a/a). The particles are assumed to be distributed

uniformly in ω, Ω, and M . We assume that the random kinetic energy of particles is

equipartitioned between eccentricity and inclination, so i = 0.5e (Hornung et al., 1985).

So velocity anisotropy, important when particles are very cold (Ida & Makino, 1992;

Rafikov, 2003), is not treated properly here.

These simplifications allow us to describe particles only by their masses and eccen-

tricities. We track particle flow across both the mass bins and the eccentricity bins, as

is done in Krivov et al. (2005). This differs from the approach of, e.g., Kenyon & Luu

(1998), where particles carry with them floating mass values. The eccentricity bins have

values from e = 10−7 to e = 1 and are equally spaced in logarithmic space with typically

four bins per decade (∆e = 100.25e). The mass bins are also spaced in logarithmic space,

with six bins covering a decade of mass (i.e., ∆m ≈ 1.47m). Particles of all masses are

assigned the same bulk density, ρ = 1.5g/cm3.
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The dispersion velocity of a particle is (Wetherill & Stewart, 1993),

v = vkep

√

5

8
e2 +

1

2
i2 (3.1)

where vkep = Ωa with Ω being the orbital angular frequency.

We use a second-order Runge-Kutta integrator to advance the simulation in time, as

the dynamical processes detailed below lead to mass and eccentricity evolution. There

are two subtleties in the actual implementation. First, when the outcome of an inter-

action results in a new mass/eccentricity that falls in between two adjacent bins, we

split the particles into the two logarithmic bins conserving total mass and mass-weighted

eccentricity (in the case of eccentricity), and total mass and total number (in the case of

mass). Moreover, our integration has a fixed time step, typically set to be 100 years. In

the case where dynamical evolution leads to undershooting (negative number of particles)

in a bin at the end of a timestep, we reduce the strength of the dynamical interaction

such that the bin empties to zero. This is necessary when bodies are strongly affected

by processes like viscous stirring and collisional cooling.

3.2.2 Dynamical Friction & Viscous Stirring

Mutual gravitational interactions lead to equipartition of random kinetic energies between

bodies. This is called dynamical friction (Chandrasekhar, 1943). Additionally, in a

keplerian disk, gravitational interactions between bodies convert their orbital energy into

random kinetic energy. This is called viscous stirring (Safronov, 1969).

To model dynamical friction and viscous stirring, we adopt the prescription of Ohtsuki

et al. (2002), who provide semi-analytic formula for the rates at which eccentricity and

inclination evolve through gravitational scatterings, calibrated by N-body simulations.
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Figure 3.1: The magnitudes of viscous stirring and dynamical friction (negative in sign)

used in our code (continuous lines), as compared to the order-of-magnitude estimates

(broken lines) of GLS, plotted here as functions of eccentricities. Their expressions are

explicitly labelled here. These rates are calculated for a population of s = 1 cm small

bodies and R = 1000 km big bodies interacting with small bodies at 45 AU. The surface

densities are Σ ∼ 10−4 g/cm3 and σ ∼ 0.1g/cm3, and the velocities are set to be u = v.

The rate of dynamical friction applies to the big bodies only. The big body have Hill

velocity vH = eHvkep with eH ∼ 10−3. The GLS rates are similar to our numerical rates if

one replaces their vH by 2.5vH , as also suggested by N-body experiments (Nishida, 1983;

Greenberg et al., 1991).
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They provide the expression:
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dt
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Here:
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(
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)
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(
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)

being the complete

elliptic integrals of the first and second kind respectively. But when the mutual velocity of

two bodies are below their mutual Hill velocity (sub-Hill), we instead adopt the viscous

heating prescription in eq. (13) of Collins et al. (2007), calibrated by the numerical

simulations of Collins & Sari (2006). They provide the expression

de

dt
= 2.4

ΣΩ

ρR

1

α2
eHill. (3.3)

To compare our adopted prescriptions against analytical scalings in GLS, we inte-

grate a disk that is composed of two uniform groups of particles (Wetherill & Stewart,

1989, GLS). One group is the smaller bodies with size s, surface density σ and velocity
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dispersion u; the other group is the large bodies with radius R, surface density Σ and

velocity dispersion v. We denote vH to be the Hill velocity of the large bodies,

vH = vkep

(

Mbig

3M⊙

)1/3

≈ 3−1/3α−1 ΩR , (3.4)

where the big body mass Mbig = 4π/3ρR3 with ρ being the bulk density. We set ρ to be

the mean density of the Sun, and use α to denote the angular size of the Sun, viewed by

the bodies, α = R⊙/a. For the Kuiper belt, α ∼ 10−4.

GLS give explicit formulae for the rate of viscous stirring and dynamical friction,

depending on whether the velocities are sub- or super-Hill (also called shear- or dispersion-

dominated). The two most relevant expressions are viscous stirring of small bodies by

the big ones, and dynamical friction of the big bodies by the small bodies. Assuming

u > v, these are

1

u

du

dt

∣

∣

∣

∣

vs

∼ ΣΩ
ρR

α−2















(

vH

u

)4
u > vH ,

(

vH

u

)

u < vH.

(3.5)

1

v

dv

dt

∣

∣

∣

∣

df

∼ −σΩ
ρR

α−2















(

vH

u

)4
u > vH ,

1 u < vH.

(3.6)

Viscous stirring of large bodies by themselves can be found by substituting v for u in

equation 3.5. As Fig. 3.1 shows, our adopted prescriptions agree with the above estimates

well, especially if vH in these estimates are substituted by 2.5vH . We will henceforth adopt

the GLS rates for analytical derivations.

3.2.3 Collisions: Cooling and Cascade

In the particle in a box method, the frequency of collision for a particle is fc = nπb2v.

Here, n is the number density of other particles, πb2 the cross section for collision, and

v the relative velocity. The relative velocity between two particles is simply set to be

v =
√

(v2
1 + v2

2) where vi is as defined in equation (3.1).
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Under our assumption of evenly distributed orbital angles, particles in an (a, e) bin

occupy a torus that has a physical volumn (see, e.g. Krivov et al., 2005),

V (e) =
4π

3
a3

[

(1 + e)3 − (1 − e)3] sin i . (3.7)

Their number density is then obtained by n = N/V where N is the particle number. Be-

tween two groups of particles with different e’s (e1, e2, but the same a), their overlapping

volume is determined by the group with the smaller e (let it be e1), and the collision

frequency should be reduced by a ratio of V (e1)/V (e2) to take account of the reduced

residence time group 2 particles spend inside V (e1).

The cross section for interaction, between particles of size s1 and s2, has a three-piece

form (Greenberg et al., 1991; Dones & Tremaine, 1993, GLS),

πb2 =































π (s1 + s2)
2
(

1 + v2
esc

v2

)

vH < v,

π (s1 + s2)
2
(√

6α− 1
2

vH

v

)

α
1
2 vH < v < vH,

π (s1 + s2)
2
(√

6α− 3
2

)

v < α
1
2 vH .

(3.8)

These are the thick, thin, and superthin cases, respectively. Moreover, these expressions

apply when the velocity dispersion is isotropic (i ∼ e).

Collisions can change both velocity and mass for the particles concerned.

In terms of velocity evolution, we set the orbits of the post-collision particles to follow

the motion of the center of mass. This is equivalent to assuming a complete dissipative

collision, or that the coefficient of restitution is zero. Let the two bodies have initially

masses m1, m2 (mc = m1 + m2), dispersion velocities v1, v2, the constraints of mass and

momentum conservation lead to the following expressions for the new orbital elements,

(af , ef ) (Krivov et al., 2005):

mc

2af

=
m1

mc

m1

2a1

+
m2

mc

m2

2a2

−m1m2

mc

(

v1 · v2

GM⊙

− 2

r

)

,

mcaf

√

1 − e2
f = m1a1

√

1 − e2
1 + m2a2

√

1 − e2
2 , (3.9)
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where r is the position of the collision. For our single zone calculation, we keep af = a

but adopt the new ef .

An order-of-magnitude estimate for the rate of collisional cooling among small bodies

is (GLS)

1

u

du

dt
= −σΩ

ρs
. (3.10)

We confirm that our code produces a quantitatively similar behaviour (figure 3.2).
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Figure 3.2: Numerical simulations of collisional cooling, when the particles are of sizes

cm (red dots and curves) and mm (blue ones). The time axis is rescaled as νt where ν is

the collisional frequency (eq. 3.15). The order-of-magnitude expressions from GLS are

plotted as thin curves. Numerical results and analytical estimates agree to within order

of unity.

In terms of mass evolution, collisions can lead to collisional destruction, (inelastic)
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rebound, or conglomeration. Catastrophic collision is defined where the primary body

loses ≥ 50% of its mass. We specify this to happen if the specific kinetic energy in

the impact, 0.5 (m1m2) / (m1 + m2)
2 v2, exceeds the disruption threshold Q∗ (Stewart &

Leinhardt, 2009),

Q∗ ≈ 500
(

s3
1 + s3

2

)−1/9
v0.8 + 10−4

(

s3
1 + s3

2

)0.4
v0.8 , (3.11)

with all numbers in cgs units. This is the scaling for weak aggregates, and should be

appropriate for Kuiper belt bodies. For km-sized bodies, Q∗ ∼ 104 g cm−3, or a disruption

velocity with v ∼ 100 cm/s, or e ≈ 10−3.5 at 40 AU. When bodies are catastrophically

disrupted, we distribute their masses to all smaller sizes with a number distribution that

is power-law in size, dn/ds ∝ s−q with s for s = si/101/18 and 0. We typically take

q = 3.5. This means the size of the biggest fragments is close to the primary mass. In

the future, it may be useful to implement the dependence of the largest fragment mass

on the impact energy (Stewart & Leinhardt, 2009).

To verify the collisional mass evolution, we test our code against the standard case of

collisional equilibrium for which an analytical solution is known. For a material strength

Q∗ ∝ sp, collisional cascade will carry a constant mass flux downward in particle size and

build up an equilibrium size distribution of (Dohnanyi, 1969),

dn

ds
∝ s−q, (3.12)

with q = (21 + p)/(6 + p). The well-known Dohnanyi law is a special case: q = 3.5 when

p = 0. In the numerical experiment shown in Fig. 3.3, we adopt a constant strength

of Q∗ = 108 ergs/g, and initialize the particle size distribution with dn/ds ∝ s−4. We

ignore collisional cooling here by using only one eccentricity bin (e = 0.15). Irrespective

of the power-law we choose for the debris redistribution, we find that small bodies in

the system settles into the expected q = 3.5 form and larger bodies gradually enter into

collisional equilibrium as time goes on (figure 3.3).
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Figure 3.3: Evolution in the differential mass distribution during a collisional cascade,

plotted at t = 0, 104, 105, 106 yrs (red curves). Collisional strength is taken to be a

constant and bodies that are in collisional equilibrium satisfy dn/dR ∝ R−3.5 (Dohnanyi,

1969). Initial surface density σ = 0.1g/cm2, and mass of the catastrophically disrupted

bodies are distributed to smaller sizes as dn/dR ∝ R−q with q = 4. For comparison,

the blue dashed curve shows the size distribution at 106 yr if the redistribution instead

proceeds as q = 2. We assume all particles smaller than 1µ m are instantly blow away

by radiation pressure, this leads to the wavy pattern near the cut-off size, as described

in Thébault et al. (2003).

If the collision energy is too low to cause destruction, we separate the outcomes into

two further categories: rebound or conglomeration. In our code, conglomeration occurs
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when the relative velocity is less than 10 times the mutual escape velocity. This disfavors

conglomeration of small bodies: kilometer-sized bodies only accrete each other when

e . 10−3. When this is not satisfied, the bodies rebound, moving away from the collision

site at the velocity of the center-of-mass. We do not model either cratering collision or

sticking by chemical forces. In the following, we discuss in more detail the accretion

process.

3.2.4 Details on Accretion

Given the collisional cross section in eq. (3.8), we find the following rate for accretional

growth (GLS),

1

R

dR

dt
∼ σΩ

ρR
α−1































(

vH

u

)2
, vH < u < vesc,

(

vH

u

)

, α
1
2 vH < u < vH,

(

α− 1
2

)

, u < α
1
2 vH .

(3.13)

Small bodies here (σ and u) refer to all bodies ≤ R that contribute to the accretional

growth. Our numerical algorithm does reproduce the above relations. But we have to

discuss a subtlty here. These expressions are based on an isotropic velocity dispersion,

or i ≈ e. However, when u < vH , small body inclinations are stirred by bodies R at

a lower rate than their eccentricities while both quantities are damped by dynamical

friction at comparable rates. If only bodies R are responsible for stirring, we should find

small bodies with i ≪ e and the accretion rate should take on the super-thin formula

(GLS). In practice, the stirring is contributed by all bodies, and especially in the sub-Hill

regime, contribution from bodies other than the largest sizes are more important. Short

of tracking the inclination evolution1, it is difficult to ascertain the accretion geometry.

Moreover, the enhancement in accretion rate due to the super-thin treatment is a factor

of α−1/2(u/vH) over the sub-Hill accretion rate. This is a significant enhancement for

1This is computationally prohibitive
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bodies that have u ≈ vH, but insignificant for bodies with u ≪ vH. Fig. 3.4 shows that

these are objects that are much smaller than Rmax at any given time. In this chapter,

we simply assume an isotropic velocity dispersion even though it carries mistakes when

dealing with, esp., accretion among big bodies. See section 7.2 for a comparison of the

isotropic and superthin limits in the collisionless case.

We discuss a numerical detail that concerns the growth of the largest bodies. When

two bodies (m1,m2, with m1 < m2) merge, the combined mass in the new body typically

falls between m2 and the next mass bin (m3). We deposit a fractional body in the m2 bin

and the remainding fraction in the m3 bin, conserving total mass. This causes no major

concern except where the fractional body in m3 is the largest body in the system and it

accretes much more quickly than other bodies. We would then have a fractional body

running away from the pack. To avoid this unphysical outcome, we record the number of

bodies in m3 when the bin is first occupied, let this be f . We then refrain from promoting

the body in size until the bin has grown in total mass (∆m) through accretion onto the

bodies of mass m3, by an amount of

∆m ≥ (m4 − m3) × f , (3.14)

where m4 is the next mass bin. Until that time, the extra mass is stored in bodies of size

m3. Once ∆m meets condition 3.14, bodies are promoted from m3 to m4 in a fashion that

retroactively conserves total number. We call this “large body gating” and we believe it

best captures the nature of large body growth in our numerical scheme.

3.3 Conglomeration: Results and Analytics

For the purpose of validating our conglomeration code, we adopt an initial set-up of the

planetesimal disk that is similar to previous works (Greenberg et al., 1978; Wetherill

& Stewart, 1989; Kenyon & Luu, 1998; Kenyon & Bromley, 2008; Ormel et al., 2010;

Schlichting & Sari, 2011). Our disk is made up of 1 km planetesimals with a surface
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Figure 3.4: Results of conglomeration simulations, starting from a disk of 1km bodies

with a surface density σ ∼ 0.1g/cm2 (solid density for MMSN at 40 AU, a total mass of

10M⊕ in simulation) and an initial eccentricity 10−7. The left panel shows the evolution

of differential mass and the right panel that of eccentricity, plotted as functions of body

sizes. Data is plotted at 250 kyrs, 4 Myrs, 8 Myrs, 12 Myrs, 16 Myrs, 20 Myrs (thin

lines), and 40 Myrs (thick line). In the left panel, the dashed blue line indicate 1 body

per mass bin (18 bodies per size decade), and the upturn in differential mass at the

largest size bin is an artefact of our ’large-body-gating’ procedure (see §3.2.4). At 40

Myrs, the number distribution of large bodies (100-1000km) can be roughly described as

a power-law, dn/ds ∝ s−q with q ∼ 3.5 (although a power law fit may not be preferred).

The efficiency of conglomeration, defined here as the mass fraction above 100 km, is 10−3.

On the right panel, the two thin dashed lines correspond to the surface escape velocity

and Hill velocity for different size bodies. At 40 Myrs, small bodies are uniformly stirred

by the largest bodies (e ∝ s0), while larger bodies experience dynamical friction from the

seed planetesimals, so e ∝ s−1/2, roughly consistent with equipartition of kinetic energies.

These behavior agree with the analytical expectations in Rafikov (2003), and is found in

simulations by Kenyon & Bromley (2008); Ormel et al. (2010)
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Figure 3.5: Time evolution of small body eccentricities for the simulation in Fig. 3.4

is plotted as a solid red curve, and that of the Hill eccentricity of the largest bodies

plotted as blue dashed curve, eH(Rmax) ∼ 10−3(Rmax/1000 km). Initially, eccentricities

of small bodies grow ∝ t1/4, as their self-stirring ... then eccentricity growth follows

e ∝ t; afterwards, e ∝ t1/4 again. The small bodies stir each other up to ∼ 1/3 of their

escape velocities after a few Myrs. This is followed by a rapid (flat e) and slow (rising

e) run-away phase. See text for details. In the slow phase, the dispersion velocity of the

seed materials scales with the largest body size as in equation (3.22).

density of σ = 0.1 g/cm2, spread over a radial width of ∆a/a = 0.13 at a = 45 AU. This

corresponds to a total mass of 10M⊕. These bodies (∼ 1013 of them) are initially placed

on dynamically cold orbits with e = 10−7. There is not a strong rationale for these initial

conditions, and we will revisit the subject in chapters 4 and 5. We argued in chapter

78



2 that current observations are inconsistent with conglomeration simulations where the

seed planetesimals are as large as a kilometer, however, given the body of previous works,

it is a sensible starting case.

Our simulations results are shown in Fig. 3.4, with Figs. 3.5 & 3.7 providing di-

agnostic details. The growth of the largest bodies is mainly due to accretion of kilo-

meter seeds, at all times. So we focus on the eccentricity of the seed materials. The

following scalings for the Kuiper belt region are useful: eesc ∼ 10−1(R/108 cm), and

eH ∼ α1/2eesc ∼ 10−3(R/108 cm). We also interchangably use two size distributions: the

number distribution and the mass distribution. If the number distribution dn/dR ∝ R−q,

then the mass distribution dm/d log R ∝ R4−q.

The seeds have a mean collision frequency

ν =
σΩ

ρs
∼ 10−7 yr−1 . (3.15)

This is the natural timescale in the problem of interest. So from now on, we express time

always in the unit of tν. So after ∼ 106 yrs, or tν = 0.1, they stir each other up to ∼ 1/2

of their escape velocities (eq. 3.5).2 Or, e ∼ 10−4, this is about the Hill velocity of a

100 km body. Run-away accretion (eq. 3.13) proceeds with the largest bodies pulling

away from the rest of the pack but carrying little total mass (left panel of Fig. 3.4).

These largest bodies dominate the heating process but they are able to grow faster than

they stir. This fast growth proceeds for a few million years until the largest bodies have

reached ∼ 500km. By now their stirring effects begin to interfere with their feeding. This

is a precursor to the ’oligarchic phase’ (Kokubo & Ida, 1998) in which individual large

bodies dominates the stirring in its own feeding zone. The run-away growth proceeds

much more slowly from this point on, so we term it the ’slow run-away’.

We can understand these growth processes quantitatively, using the analytical scalings

from GLS, as collected in §3.2.2 and 3.2.4. To do so, we separate the growth into three

2The actual value is closer to vesc as we have shown that numerical expressions are best approximated
by the GLS scalings if we replace vH by 2.5vH . We ignore the difference here.
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phases.

3.3.1 Geometric Accretion

The very early growth is dominated by pair-wise conglomeration among equal-sized bod-

ies (size s). Assume collisions occur with geometric cross-section. At time t ≪ 1/ν, the

average collision probability for each of the 1013 km-sized bodies is (tν), but the proba-

bility of a single body having experienced N collisions is (tν)N . So the size distribution

is a steep function of N ,

dn

dR
∝ (tν)NR2 , (3.16)

where R = N1/3s. The largest body expected at time t is determined by (tν)N1013 = 1,

or at a radius of

R1000(tν) ≈ s

108

[− log(1013)

log(tν)

]1/3

, (3.17)

where we have scaled R by the approximate size of Pluto, R1000 = R/108 cm. We have

ignored the evolution of u and the gravitational focussing during this process. These two

effects complicates the discussion without affecting the conclusion much.

3.3.2 Rapid Run-away

During this stage of growth, we consider the seeds have been self-stirred to a constant

value of e ∼ 10−4 (or u ∼ uesc). The growth rate of large bodies is controlled by the

super-Hill accretion (eq. 3.13),

1

R1000

dR1000

d(tν)
∼ s

R
α−1

(vH

u

)2

∼ 108s−1R1000. (3.18)

From time tν to tν + ∆, large bodies have grown to

R1000(tν + ∆) =
1

R−1
1000(tν) − 108s−1∆

. (3.19)

Obviously, most of the time is spent at growing bodies near the starting size, R1000(tν).

The value of this size critically impacts the duration of runaway growth. Setting this value
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to that in equation (3.17), taking the limit of R1000(tν + ∆) → ∞, and approximating

∆ ∼ tν, we find the time to commence the run-away growth is (for s = 1 km)

(tν)run−away ∼ 0.33 . (3.20)

At this time, the biggest body present is R ≈ 3 km. We consider this the time before a

“successful run-away”: if u is maintained at the value of 10−4, by (tν)run−away, geometric

accretion have produced large enough seeds (3 km) that can grow to infinity within a

similar amount of time. This explains why the simulations have already produced bodies

almost as large as Pluto in a few Myrs.

During this runaway stage, it is possible to deduce the shape of the size spectrum.

Consider an initial size spectrum, dn0/dR0, over a narrow range of R0 (say, R0 = 2 km to

3 km). Each body grows according to equation (3.19). Conservation of the body number

yields,

dn

dR
=

dn0

dR0

dR0

dR
∝ dn0

dR0

(

R0

R

)2

. (3.21)

The results of this simple analytical model are illustrated in Fig. 3.6. The size spectrum,

dn/dR ∝ R−q, starting with an initial q ≫ 1, transitions to q ≈ 4 when vH reaches u. By

this time, the largest bodies manage to dominate the viscous stirring. And their stirring

rate becomes comparable to their growth rate, or,

Σ

σ
α−1

(vH

u

)2

≈ 1 . (3.22)

For our simulation, this occurs at R ∼ 100 km, with e ∼ 10−4, and Σ/σ ∼ α ∼ 10−4,

at a time of t ∼ 12 Myrs. Beyond this point, the assumption that u remains constant

breaks down.

This transition point is affected by our treatment of ’large body gating’. If one

employs a more stringent advance criterion than that in equation (3.14), for instance,

the mass density Σ at a given size will be greater as the run-away (which thins out the

number) is more restrained. So the transition would occur at a smaller R.
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This transition point is also affected by the value of u. If initial e = 10−3, e.g., the

transition would occur at R = 103 km with again Σ/σ = 10−4.

Lastly, this transition point is affected by the initial size spectrum, which we have

taken to be that in equation (3.17). If we take a less steep fall-off, the minimum in the

mass spectrum (where q = 4) occurs at a smaller size.

3.3.3 Slow Run-away

The rapid run-away stage, discussed above, ends when the large bodies become powerful

stirrers. It is then followed by a slower growth during which the rate of stirring by large

bodies remain comparable to their growth rate. The evolution beyond this point is a slow

run-away as the rising u slows down the growth. Assuming a power-law size spectrum

dn/dR ∝ R−q, the size for the largest body and the small body dispersion scales with

time as

Rmax ∝ (tν)1/(5−q), u(t) ∝ (tν)
6−q

2(5−q) ∝ R(6−q)/2
max , (3.23)

respectively. But, what is the value of q?

From our simulations, we find q fluctuates with time but centers around q ≈ 4. This is

similar to results of Kenyon & Luu (1998); Schlichting & Sari (2011). An explanation for

q ≈ 4 is given in SS11 (see §3.4.2). However, here, we present a different interpretation.

Let us define a class of trans-Hill bodies (Rtrans(t)) that satisfy vH ≈ u(t). These

bodies are ∼ 100 km at the end of the rapid run-away. We argue below that at later

timers, the trans-Hill bodies remain effectively the largest bodies in the system, or,

Rmax ≈ Rtrans, and equivalently, u ∼ vH(Rmax). According to equation (3.23), this gives

rise to q = 4.

Let us consider growth of bodies above and below Rtrans(t). Growth of bodies with

R < Rtrans is a run-away processs. Rescale their growth by that of Rtrans (eq. 3.13), we
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obtain

1

R

dR

d(tν)
≈ s

Rtrans

α−1

(

R

Rtrans

)

, (3.24)

which, with a suitable transformation of the time-coordinate, is identical to equation

(3.18). The growth of smaller bodies will be negligible compared to that of Rtrans and

their size spectrum remains largely frozen.

Growth of bodies with R > Rtrans is orderly. Their size spectrum remains invariant

with time. Since Rtrans = Rmax, or the trans-Hill bodies are practically the largest bodies

at the end of rapid run-away (i.e., not much mass above it), they would also remain the

largest bodies at later times.

As a result of these two considerations, u ≈ vHill(Rmax) ∝ t during the slow run-away,

and the size spectrum extends to larger and larger sizes with Σ ∼ const, or q ≈ 4.

Adopting u ∼ vH and using equation (3.13), one finds that it takes a time ∼ (s−1α 108 cm)tν ∼

0.1tν to reach R = 1000 km, consistent with the results shown in Fig. 3.4. The mass dis-

tribution shown in Fig. 3.4 shows an upturn near R ∼ 1000 km, or the large bodies grow

above the q = 4 spectrum. This is the result of our ’large body gating’, that we insist on

the presence of an integer body in the largest bin. The requirement that Σ have at least

one body slows down the run-away and allows a higher mass density to accumulate in

these largest bins. This also explains the upward thrust of u/vH in Fig. 3.5 at the very

end.

3.3.4 End of Growth

The efficiency of formation, defined here as the mass fraction above 100 km, rises from

∼ 10−4 to ∼ 10−3 during the slow run-away. The largest bodies formed has a size of

∼ 1000 km, roughly Pluto-sized. We argue below that the growth effectively stops when

these values are reached. In other words, collisionless conglomeration produces large

bodies but at a very low efficiency.

During the slow run-away, equation (3.22) is continuously satisfied, yielding Σ/σ ∼ α.
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So the largest size bodies that can form, insisting on at least a single body, is at ∼ 1000km

(see the single-body line in Fig. 3.7). With Rmax ≈ 1000 km, our definition of formation

efficiency is then

ǫ =

∫ Rmax

100km

Σ d log R ≈ a few α−1 ∼ 10−3 . (3.25)

Once the single large body reaches 1000km, its growth is stunted by the lack of

materials, R ∼ const and Σ ∼ const. Meanwhile, it continuously stirs small bodies to

super-Hill velocites, this produces the u ∼ t1/4 scaling that we observe in the simulations

(figure 3.5). This process only stops when u ∼ vesc beyond which the growth of the

big bodies proceeds as geometrical accretion. Pluto has a geometrical optical depth

of (1000 km/40 AU)2 ∼ 10−14. With a Pluto providing Σ/σ ∼ 10−4, it will take ∼

1010 orbits (∼ 1012 years) to double its mass. Thus growth is effectively over at that

point. If the efficiency of formation is small at the end of the slow run-away, it will

always remain low over the life-time of the Solar System.

Two important remarks are in order here. As the stirring of km seeds continue, they

approach their mutual destruction speed at e ∼ 10−3 (eq. 3.11). Their mutual collisions

beyond this point should be destructive and will produce many small debris. At that

time collisional cooling may become important.

Second, we have assumed isotropic velocity dispersion for all bodies. This should

break down, to a varying degree, for large bodies which stir each other in the sub-Hill

range. As a result, accretion among large bodies should proceed at a greater rate than

adopted here. While formation gives rise to q = 4 along the sizes, bodies that are formed

earlier may be significantly depleted by later larger bodies, and the actual q value can be

reduced.
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3.4 Discussions

3.4.1 Varying Initial Conditions

Our above understanding of the conglomeration process allows us to explain the following

dependences when initial conditions in the simulation are altered. In all cases, we find a

similar size spectrum as that obtained above.

• Initial eccentricity Compare the growth of bodies with initial eccentricities rang-

ing from 10−7 to 10−3, with all other properties held constant. The escape velocity

of km bodies is at e ∼ 10−4. We find that simulations with initial velocity dis-

persion smaller than this quickly converge to our standard case; while those with

velocity dispersion above this value first undergo orderly growth and produce a

more significant mass intermediate class bodies. In all case, the final efficiency of

making 100+ km bodies is ǫ ≈ 10−3.

• Initial surface density We vary the initial surface density of solids from 10−3

times to 10 times the MMSN values (our standard case being 1 MMSN), with an

initial eccentricity of e = 10−7. We observe that the growth time scales inversely

linearly with the surface density (Fig. 3.9). This is because the natural timescale

in the problem is the small body collision time (eq. 3.15). This result has also been

reported reported by Kenyon & Luu (1998). We also find that higher mass disks

can harbor larger Rmax – the final size of the largest body scales roughly as σ1/3, a

result of us insisting that the largest bin has at least one whole body. Lastly, the

efficiency of formation only depends logarithmically on the initial σ.

• Initial planetesimal sizes We perform a suite of simulations with different plan-

etesimal sizes ranging from 10 m to 10 km. Since the mean collision time (eq.

(3.15)) scales inversely with the starting size s, and the entire evolution takes place

within a few collision time, we expect that a smaller starting size leads to quicker
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growth, and vice versa. This is observed in Fig. 3.10 where the growth time scales

roughly as ν−1 ∼ 107(s/1 km) yrs.3 The size of the largest bodies that form and the

size spectrum are comparable in all simulations. More importantly, the efficiency

of formation (ǫ) remains similarly low in all cases.

• Value of α Changes in surface density, starting size primarily affect the simulation

through their effect on the mean collision frequency (eq. 3.15). This quantity is

also affected by the value of α. We explore a range of α from 10−2 to 10−5, this

corresponds to a heliocentric distance between 4 to 400 AU. At constant surface

density σ0, the typical growth timescale scales as α−1.5, as expected (a realistic solar

nebula would employ σ0 ∝ a−1 ∼ σ0 ∝ a−1.5 (Weidenschilling, 1977b; Hayashi,

1981; Desch, 2007)). Moreover, we find that the efficiency of formation scales as

α−1 (Fig. 3.11), confirming equation (3.25). This dependency is slightly stronger

than that found in SS11 (ǫ ∝ α−3/4) but the numerical range of concern here is

limited.

3.4.2 Comparison with Previous Works

3.4.3 Schlichting & Sari (2011)

While earlier works (Greenberg et al., 1978; Wetherill & Stewart, 1989; Kenyon & Luu,

1998; Kenyon & Bromley, 2008; Ormel et al., 2010) have presented exhaustive studies

of the conglomeration process, SS11 is the first work to present simple analytical argu-

ments for the numerical results. As such, their work form the most appropriate basis for

comparison.

SS11 aims to explain the q = 4 spectrum, obtained by all works, as a result of equal

accretion: the largest bodies grow by accreting each other and small seeds at equal rates.

3This is steeper than the relation of s1/3 found by Kenyon & Luu (1998). This is because their initial
conditions use super-escape velocity dispersions. See figure 3.8.
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They also argued, based on the above logic, that the efficiency of large body formation

is ǫ ∼ α−3/4. These claims appear to be backed up by their simple but elegant numerical

experiments.

We disagree with both of their interpretations. We show that the q = 4 spectrum

arises is due to the fact that the largest bodies at any given time are trans-Hill relative

to the small seeds. Accretion among large bodies are not important in the growth.

We also argue that the efficiency of growth is ∼ α−1 (see Fig. 3.11). Although given

that the difference between ours and their scaling only depends weakly on α, and that

there are uncertain order-of-unity constants4, it is difficult to differentiate the two claims

numerically.

The first difference is more significant. We have given a logical argument to our trans-

Hill criterion in §3.3.3. And we study the relative accretion rates in figure 3.12, showing

that big body accretion is never significant. Unfortunately, a similar study was not

presented in SS11 and their argument for the causal connection between equal accretion

and the power spectrum seems somewhat stretched.

Our simulations have the caveat that we insist on isotropic velocity dispersion and

therefore may have underestimated the accretion between big bodies that are sub-Hill

to each other. We argued earlier that this is a significant mistake only for bodies much

smaller than Rmax and in general it does not cause much changes in the size spectrum.

However, even with this caveat, which yields unequal accretion rates, our simulations

produces q ≈ 4. This argues that the equal accretion is not an essential piece in the

theory, rather, it is the result of u ≈ vH(Rmax), our trans-Hill criterion.

Lastly, our trans-Hill criterion necessarily yields that the ratio of big body accretion

to small body accretion remains a constant during the growth, a fact we observe in Fig.

3.12.

4In particular, σ occurs at a single size, while Σ occurs across a range of sizes. Since Σ can reasonably
be defined per factor 2, e, 10 in either size or mass, there is a lot of freedom to choose the absolute
normalisation.
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Our numerical results differ from that in SS11 in a number of ways. So for a better

comparison, we repeat their simulations by adopting their parameters and their equations.

Different from our standard case in Fig. 3.4, the disk is now more massive and closer-in. It

is comprised of 40M⊕ in 1km objects orbiting at 35−45AU. The initial velocity dispersion

is set at e = 3 × 10−6. The rates are GLS rates (see equations 3.5-3.6, 3.13) which are

order of magnitude estimates. SS11 used the so-called two-group approximation where

big bodies feel dynamical friction from smaller bodies, and bodies are viscously stirred

only by bodies greater than themselves. The results of our simulations are compared with

that of SS11 in Fig. 3.13. The agreement is good. We obtain the same normalization

and the same size spectrum.

The timescale for growth in our simulation is drastically faster than that in SS11,

by almost a factor of 100. The mean collision frequency in this system is now ν ∼

1/2× 106 yr−1. But the simplified rates formula causes relatively less stirring per growth

timescale; this may explain why our growth time is 1/(4ν), as opposed to a few 1/ν.

Moreover, we find that if one includes viscous stirring on a particle by bodies of all sizes

(instead of only by bodies greater than the particle), as one should in the case of sub-Hill

stirring and q = 4 spectrum, the results will be changed. In particular, the intermediate

bodies are now substantially hotter and they are less likely to be accreted by the largest

bodies. This causes the size spectrum to be slightly more bottom-heavy than the q = 4

case. But we suppress these disagreements and focus on the issue of equal accretion. This

is shown in Fig. 3.14. Even in simulations that are tuned to close match that of SS11,

and that reproduce largely the results of SS11, we still find accretion of small bodies

dominate the growth. We do observe that accretion of big bodies stay at a constant

fraction of the total growth (∼ 10%), as is necessary when v ∼ vHill.
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3.4.4 Kenyon & Luu (1998)

We conduct a second comparison, to the simulations of Kenyon & Luu (1998). We

choose this paper for comparison over subsequent ones from the same group because

simulations in this paper experiences negligible influence from the gas dynamics and has

initial conditions that are the closest to our set-up. They begin with bodies of a single

size (we will compare here to their 800 m case), with a total mass of 10M⊕ in an annulus

from 32 to 38 AU and an eccentricity of e = 10−3. This corresponds to velocities that are

the escape velocity of 10 km-sized bodies. So the early accretion (before 10km) proceeds

slowly without the benefit of gravitational focussing. Results for Rmax(t) are plotted

in figure 3.15. The growth time in our simulations agree within ∼ 30% from those in

Kenyon & Luu (1998).

One significant difference appears when we compare the size distributions. Kenyon

& Luu (1998) report a quantity r5 (defined by the cumulative number n(> r5) = 105) of

51 km, while we find r5 = 31 km. Similarly, our formation efficiency ǫ is a factor of a few

lower. We believe their higher efficiency is related to the pseudo-multizone treatment

in their simulations where big bodies are intentionally seperated from each other to

suppress the rate their mutual accretion. Ormel et al. (2010) achieve the same result

by employing a multi-zone treatment of semimajor axis. We experiment by imposing a

minimum eccentricity floor of e = 10−4 (standard value 10−7). This keeps the big bodies

artificially hot and results in a larger surface density in the big bodies. We now have

r5 = 53 km. The growth of the largest body proceeds at the same rate, as growth is

dominated by accretion of small bodies. The formation efficiency remains low, in line the

experiments of Kenyon & Luu (1998) and Ormel et al. (2010).
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3.5 Conclusions

In this chapter, we focus on the efficiency of forming large bodies by conglomeration.

Starting from a sea of equal-sized plantesimals, we find, concuring with previous studies,

that the formation efficiency is ∼ a few × α−1, or ∼ 10−3 at the distance of Kuiper belt.

We achieve this result numerically by constructing a conglomeration code that in-

corporates physical processes such as viscous stirring, dynamical friction and accretion.

This code also has the capability of dealing with catastrophic disruption but we do not

employ that ability in this chapter. Collisional cooling is not significant for planetesimal

seeds of ∼ 1km in size. And here we insist that these seeds can not be broken down to

smaller particles.

We also achieve an analytical understanding of the formation efficiency. We find

that in collisionless environments, growth passes through several stages but is essentially

finished within a few collision times of the starting planetesimals. During these, large

bodies grow primarily by accreting the small bodies (and not by accreting each other).

Growth is a run-away process when small bodies are super-Hill and an orderly process

when small bodies are sub-Hill. Consequently, the biggest body at any given time sits at

trans-Hill, or u ∼ vH(Rmax). This trans-Hill criterion then yields the size spectrum q = 4

and a formation efficiency of ǫ ∼ α−1.

To be confident of our numerical procedure, we have tested individual components in

the code against the order-of-magnitude formula in GLS. We have also performed detailed

comparisons with previous simulations. These include SS11, Kenyon & Luu (1998) and

Ormel et al. (2010). All previous works yield the same low formation efficiency, and a

similar size spectrum (q ≈ 4) as we do here. But some detailed differences exist. We are

able to reproduce the exact size distribution (both in normalization and in slope) of SS11

when we follow them in adopting the order-of-magnitude rate formula from GLS and in

ignoring viscous stirring contributed by small bodies. However, we demonstrate that the

key assumption they base their analytical understanding on, that big bodies grow equally
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by accreting small bodies and by accreting other big bodies, does not hold. Comparison

against Kenyon & Luu (1998) show that we reproduce their growth timescale but under-

predicts the number of intermediate size bodies. This is likely related to their treatment

of separating big bodies to prevent mutual accretion. We have also found that our main

results stand even when initial conditions are varied over large numerical ranges.

We further argue that it is impossible to raise the formation efficiency to order unity

(Σ ∼ σ) during the oligarchic accretion phase, when individual big bodies are well sepa-

rated and dominate the stirring in their respective feeding zones.

Surface densities in large bodies in the Kuiper belt have been measured to be ∼ 10−3

of that of the MMSN. This has traditionally been viewed as a success of the collisionless

coagulation theory. However, recent discoveries of bright extra-solar debris disks call this

into question. Their dust luminosities reveal that they likely harbor large bodies that

are a factor of 100 or more in mass than that in our Kuiper belt (chapter 2), comparable

to the total mass in a MMSN disk in these outer regions. This conflicts with the low

formation efficiency, generic to collisionless conglomeration scenarios.

In our simulations, km-size seeds reach such high velocity dispersion towards the end,

that their mutual encounter should cause fragmentation. This is also observed in Kenyon

& Luu (1999a); Kenyon & Bromley (2008); Ormel et al. (2010). Even if planetesimal seeds

start as large as 1 km, collisional evolution appears unavoidable. An evolutionary path

that is qualitatively different from that described here may ensue. Previous simulations

have used very approximate treatments to describe small grains that may have missed

important dynamics.

To resolve the issue of long formation timescale for Uranus and Neptune, Goldreich

et al. (2004a) have proposed that conglomeration can proceed in a collisional environment,

where small bodies are cooled by their frequent collisions. In chapters 4 and 5, we follow

this path and demonstrate that collisional conglomeration would also be able to raise

the efficiency of formation to of order unity, thereby uniting within one paradigm the
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formation of the Kuiper belt and the extra-solar debris disks.
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Figure 3.6: Simple analytical model for the evolution of the mass spectrum during the

phase of rapid runaway. The numbers next to the lines mark the time in unit of tν.

Particles with initial sizes between 2 and 3 km, and an initial mass spectrum (at tν =

0.33) as described by equation (3.17), accrete from a sea of 1 km bodies with e = 10−4,

comparable to the Hill velocity for 100 km bodies. Assuming u remains unchanged during

this epoch, the mass spectrum evolves quickly towards q = 2 at R ≥ 100km. However,

the assumption of a constant u breaks down when the rate of large body stirring becomes

comparable to their growth rate. These results pertain to a steep initial size spectrum

like that in equation (3.17). Comparing with the numerical results in Fig. 3.4, we find

that the procedure of ’large body gating’ in our numerical algorithm prevents the largest

bodies from growing as fast as in this analytical model.
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Figure 3.7: Fractions of initial mass that are incorporated into large bodies, as functions

of largest body sizes. In the text we adopt the mass fraction above 100 km to be the

efficiency of formation, and it reaches ∼ 10−3 towards the end of the simulation.
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Figure 3.8: The size of the largest body in growth from kilometer sized bodies, comparing

cases with initial eccentricity e0 = 10−3, 10−4, 10−5, 10−6, and 10−7. The escape velocity

of 1 km bodies corresponds to e ∼ 10−4. We see that if the bodies begin subescape,

the evolution quickly converges. The size mass distributions also converge in that case.

Bodies that start superescape grow initially in an orderly regime, until there are bodies

that are subhill to the starting eccentricity, then growth proceeds from that size (e.g.,

the e0 = 10−3 run here is similar to run starting cold with ∼ 10 km objects, as 10−3 cor-

responds to vesc for 10 km objects.
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Figure 3.9: Growth of the largest body as functions of time, for disks with different

surface densities. The total mass spans from 10−3 MMSN (bottom-most curve) to 10−2,

10−1, 1 and 10 MMSN (top-most curve), with the thick red curve being our fiducial case.

We find the timescale of runaway growth obeys t ∝ σ−1. All growth follow the pattern

of a rapid run-away, followed by a slow run-away, and ending when a single body exceeds

the expected Σ.
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Figure 3.10: Growth of the largest body in simulations with different starting sizes,

s = 10 m, 100 m, 1 km, and 10 km. Bodies grow slowly at first, while the velocity

dispersion is set by the escape velocity of the starting size. Eventually a few bodies run

away, when they are sufficiently large. The timescale of runaway increases linearly with

starting size, as the collision time varies inversely with the starting size (equation 3.15).
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Figure 3.11: Differential mass spectrum for different values of α, where α =

10−4(40AU/a). We find that at constant surface density σ0, the formation timescale

varies with α roughly as α−1.5, as the mean collision time is longer at larger distances.

Moreover, as shown here, we find that the efficiency of formation scales roughly as α−1,

as predicted by equation (3.25). This is steeper than the prediction of α−3/4 in SS11.
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Figure 3.12: Relative contribution in accretional growth from different size bodies, plotted

here as cumulative source to growth vs body sizes, for when Rmax = 30, 100, 300 and

1000 km. These are obtained for the model as shown in Fig. 3.4. We insist on isotropic

velocity dispersion in these simulations, which may underestimate the accretion between

large bodies that are sub-Hill to each other.
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Figure 3.13: The red solid curves show the differential mass distribution from our sim-

ulations (plotted every 105 yrs, ending at 5 × 105 yrs) that are tuned to match that of

SS11 (blue dashed curve). The resulting mass distributions of large bodies agree both in

normalization and in shape with that in SS11. The timescales of growth, however, differ

substantially. The SS11 results are recorded at the end of 50 Myrs.
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Figure 3.14: Same as Fig. 3.12, but for the simplified simulations that are tuned to match

that of SS11 (see text). Instead of equal accretion of big and small bodies expected by

Schlichting & Sari (2011), we observe that accretion from small seeds dominates at all

times, with accretion from large bodies staying at a constant fraction of the total growth,

∼ 10%. The upturn in mass density observed in Fig. 3.4 at the large size end is due to the

requirement of a single-body in a given bin. This effect would occur in this simulation

as well. But it occurs at a size > 103 km due to the higher mass normalization and

formation efficiency here.
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Figure 3.15: The size of the largest body as a function of time, for our simulation

(red curve) and that of Kenyon & Luu (1998) (blue crosses). The growth rates agree

qualitatively, although ours is faster by ∼ 30%.
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Chapter 4

Collisionally Damped

Conglomeration in the Cold

Classical Kuiper Belt

This chapter is a modified version of a draft publication. The research was done in

conjunction with Dr. Yanqin Wu, and Dr. Yoram Lithwick, and the preparation of the

chapter was done in conjunction with Dr. Yoram Lithwick. It is reproduced here with

their permission.

4.1 Background

Edgeworth (1949) and Kuiper (1951) noted that if the protosolar nebula extended beyond

Neptune, we should expect to find a comet belt beyond 30 AU. Although that belt had

been discovered twenty years previous (Slipher & Tombaugh, 1930), it was not recognised

as such until the 1990s, with the discovery of additional members (starting with Jewitt

& Luu, 1993). The Kuiper Belt has multiple populations with different formation and

dynamical histories. In this section we focus on the Cold Classical Kuiper Belt. While
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evidence is suggestive that the other populations formed closer to the Sun (Malhotra,

1993, 1995; Levison et al., 2008), the properties of the Cold Classical Kuiper Belt suggest

that it formed in situ.

There is an overabundance of objects with inclinations less than ∼ 5◦ which only

exists between ∼ 42 and ∼ 46 AU (Brown, 2001; Kavelaars et al., 2008; Petit et al.,

2011). Other studies that look for correlations among Kuiper Belt objects generally do

not distinguish between the dynamical classes, and look for correlations with inclination1

Several properties of the Cold Classical Belt are relevant to our analysis. The largest

bodies are ∼ 200 km (Levison & Stern, 2001; Fraser et al., 2010). At sizes of ∼ 200 km

down to ∼ 50 km, the size number distribution can be fit by a power law dn/ds ∝ s−q with

index q = 5.1 ± 1.2 (Fraser et al., 2010), q = 7+1
−1.5 (Petit et al., 2011). The power law

breaks at ∼ 50 km to a shallower value with q . 4 (Bernstein et al., 2004; Schlichting

et al., 2009). This means that most of the ∼ 10−2M⊕ ∼ 10−1M⊕ (Fuentes & Holman,

2008; Fraser & Kavelaars, 2009; Vitense et al., 2010) is in bodies with ∼ 50 km radii2.

Historical models of the growth of the Kuiper Belt planetesimals begin with ∼km

sized objects, following the planetesimal formation model of Safronov (1969); Goldreich

& Ward (1973). These models find that stirring by large bodies is faster than the growth

of large bodies, and that in the resulting super-Hill, sub-escape accretion regime, large

bodies grow faster than small ones, leaving the small ones behind. The result is a small

number of bodies growing, accreting at relatively slow rates, and the efficiency of forming

large bodies is ∼ 10−3, with roughly equal mass per size decade (Greenberg et al., 1978;

Wetherill & Stewart, 1989; Kenyon & Luu, 1998; Kenyon & Bromley, 2008; Ormel et al.,

2010; Schlichting & Sari, 2011, also see chapter 3). At the distance of the Kuiper Belt,

growth in these models proceeds until the largest bodies are ∼ 103 kilometers - with

1The biggest stumbling block in sorting out Cold Classical Kuiper Belt Objects is that identifying
resonant objects in higher order resonances requires a comparatively long baseline of observations that
is not always available.

2The dynamically cold bodies have higher albedos than hot bodies, so the true mass should be
expected to tend towards the lower end of mass estimates (Brucker et al., 2009)
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the systems being in oligarchic growth at the present day (Kenyon & Luu, 1999b). At

∼ 1 AU, formation of planets takes ∼ 108 years (Wetherill & Stewart, 1989), and scaling

by the collision time predicts this should take ∼ 1012 years at ∼ 40 AU. The mass of the

Kuiper Belt today is ∼ 10−2 ∼ 10−3 times lower than is predicted from an extrapolation

of the mass density interior to the Kuiper Belt (Weidenschilling, 1977b; Hayashi, 1981),

and the largest objects are ∼ 103 km (Young et al., 2007; Sicardy et al., 2011). In total

mass, size number distribution, and largest body size, the region is in rough agreement

with the models.

Recently, a number of significant challenges have appeared to the model. While the

properties of the Kuiper Belt as a whole are in rough agreement with the model, most

objects are believed to have formed closer to the Sun, and been pushed outward during the

outward migration of Neptune (Fernandez & Ip, 1984; Levison & Morbidelli, 2003; Hahn

& Malhotra, 2005). The Cold Classical Kuiper Belt could have remained in situ during

this event (Batygin et al., 2011), but its properties do not match the conglomeration

models. The standard formation model would require 10M⊕ ∼ 100M⊕ to form the

Kuiper Belt in situ, but migration models of Neptune require a much lower mass to

prevent Neptune from migrating into the Kuiper Belt (Gomes et al., 2004). If there had

been ∼ 10M⊕ in kilometer sized bodies in the Kuiper Belt, we should expect long period

binaries to have been disrupted (Parker & Kavelaars, 2012), which is observed not to

be the case (Parker et al., 2011). Furthermore, if the Kuiper Belt requires ∼ 10M⊕ to

form, it may be impossible to form observed extrasolar debris disks (chapter 2). In this

chapter, we explore a new model of formation, which begins with mostly centimeter sized

grains, along with some kilometer sized seed planetesimals. Collisional cooling among

the centimeter sized grains fundamentally alters the growth dynamics, and high efficiency

(& 50%) can be achieved, allowing in situ formation of the Cold Classical Kuiper Belt

from ∼ 10−1M⊕.
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4.2 Collisionally-cooled growth: Theory

4.2.1 Initial Conditions

We are necessarily agnostic towards the origin of the initial conditions. It may be that

after the gaseous protoplanetary nebula dissipates, solid bodies of a characteristic radius

s remain behind. These bodies collide with one another on the timescale tcol ∼ (ρs)/(σΩ),

where ρ is their material density, σ is the surface density of their circumsolar disk, and Ω is

the orbital angular speed. On timescale tcol runaway growth is initiated, and a few bodies

grow much larger than the others (Goldreich et al., 2004b). If the small grains are small

enough (or break down quickly), and ∼ 10−3 of the mass in large bodies (Schlichting &

Sari, 2011), this could produce an effective two groups conditions (although see appendix

7.3). Alternatively, planetesimal formation models go from small bodies directly to large

ones (Safronov, 1969; Goldreich & Ward, 1973; Youdin & Shu, 2002; Johansen et al.,

2007), a process that should not necessarily be expected to have ∼ 100% efficiency

(Johansen et al., 2009).

In the following subsections, we work out how collisional accretion proceeds, and

derive the efficiency for converting small bodies into large. Since the small bodies’ size s

is unkown (both initially, as well as its subsequent collisional evolution), we treat it here

as a free parameter. In our estimates for the various interaction rates between groups

of bodies (accretion, viscous stirring, inelastic collisions, etc.), we use the formulae as

summarized by Goldreich et al. (2004b), with similar notation: big bodies have radius

R, velocity dispersion v, and surface density Σ; small bodies have radius s, velocity

dispersion u, and surface density σ; and all bodies have material density ρ, as does the

Sun. The formulae can be found in section 5.2. The big bodies’ Hill velocity is

vH ∼ Ωa(R/R⊙) ∼
√

GραR (4.1)
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where a is the semimajor axis, R⊙ is the sun’s radius, and

α ∼ R⊙/a . (4.2)

Their Hill radius is

RH ∼ Rα−1 . (4.3)

We assume

v < vH (4.4)

α1/2vH < u < vH , (4.5)

and check for self-consistency in Section 4.2.7. Note that the escape speed from the

surface of big bodies is vesc ∼ α−1/2vH.

4.2.2 Early Times: Accretion of Small Bodies

At early times, big bodies grow primarily by accreting small bodies at the rate

1

R

dR

dt

∣

∣

small
∼ σΩ

ρR
α−1 vH

u
. (4.6)

Small bodies are viscously heated by big bodies, which increases u, and hence decreases

the rate at which big bodies accrete them. We assume that viscous heating is balanced

by inelastic collisions amongst small bodies. Otherwise, accretion is collisionless. Then

1

u
dudt ∼ ΣΩ

ρR
α−2 vH

u
− σΩ

ρs
= 0 , (4.7)

and hence

u

vH

∼ Σ

σ

s

R
α−2 . (4.8)

Therefore big bodies grow by accreting small ones at the rate

1

R

dR

dt

∣

∣

small
∼ σ2Ω

Σρs
α . (4.9)

When s is small, growth is fast: a smaller s implies more frequent inelastic collisions

and hence a smaller u, which enhances gravitational focusing onto big bodies, making

them grow faster.
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4.2.3 Numerical Estimates for the Kuiper Belt

For a numerical estimate, we are interested in the time when accretion is ∼ 100% efficient,

i.e. we assume Σ ∼ σ when the KBO’s form. In that case, accretion is sub-Hill if s < s∗,

where is

s∗ ∼ Rα2 , (4.10)

and the time it takes the observed KBO’s to grow by accreting small bodies is

tgrow ∼ ρs

σΩα
, for s < s∗ . (4.11)

We take the present Kuiper belt’s mass to be ∼ 0.1M⊕, spread between 42 and

48AU, and hence σ ≈ 0.0016 g/cm2. Other numerical values are ρ ∼ 1 g/cm3, a ∼ 45

AU, Ω ∼ 0.02/yr, and α ∼ 10−4.

With these values, the Hill velocity is

vH ∼ 30R100 cm/s , (4.12)

where R100 = R/100 km, and the collision time is

tcol ∼
ρs

σΩ
∼ 0.03scmMyr , (4.13)

where scm ≡ s/cm. The critical s for trans-Hill accretion is

s∗ ∼ 0.1R100cm , (4.14)

and the growth time is

tgrow ∼ 300scm Myr, for s < s∗ ∼ 0.1R100cm (4.15)

where scm ≡ s/cm. Therefore big bodies in the Kuiper belt of size ∼ 100 km could have

formed with ∼ 100% efficiency in less than 30 Myr if s . 0.1 cm. We discuss below

plausible values of s. However, we have ignored the accretion of big bodies. We consider

that in Section 4.2.5
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4.2.4 Early Times:Mass in Big Bodies

It is unclear how much mass should begin in large bodies. If the total mass is small, the

velocities will be sub-Hill, which is the case we consider in section 4.2.5. The total mass

of large bodies is sufficient that u > vH, if

Σ >
R

s
α2σ . (4.16)

In that case, growth is runaway until R is sufficiently large and/or Σ is sufficiently small

until equation 4.16 is violated. At that point, u < vH, and the sub-Hill growth begins

with

Σ =
R

s
α2σ . (4.17)

4.2.5 Late Times: Equal Accretion of Big and Small Bodies

Big bodies grow by accreting one another at the rate

1

R

dR

dt

∣

∣

big
∼ ΣΩ

ρR
α−3/2 . (4.18)

Note that this rate is independent of v, whereas Equation (4.6) is ∝ 1/u. The rates

differ because sub-Hill big bodies lie in a flat disk, whereas small ones have an isotropic

velocity dispersion due to collisions (Rafikov, 2003; Goldreich et al., 2004b).

Comparing Equations (4.9) and (4.18) when Σ is given by Equation (4.17) shows that

the assumption that growth occurs only by accreting small bodies breaks down when

R & sα−3/2 . (4.19)

After the largest R exceeds this value, big bodies must grow by accreting other big bodies

at least as fast as they grow by accreting small bodies. In other words, defining

f ≡ d ln R/dt|small

d ln R/dt|big

, (4.20)

we have shown that if f ≫ 1, then f will decrease towards unity (once Equation (4.19)

is satisfied). We now consider what happens if f ≪ 1, i.e. if big bodies grow only
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by accreting each other. In that case, the growth rate is inversely proportional to R

(Equation (4.18)), hence growth is orderly (Goldreich et al., 2004b), and Σ=constant as

R grows. As that happens, the ratio of small body to big body accretion,

f ∼ σ2

Σ2
α5/2 R

s
, (4.21)

increases with increasing R. We conclude that

f → 1 (4.22)

at late times, which we call “equal accretion.” As a result, the mass in big bodies increases

with R as

Σ ∼ σ

√

R

s
α5/4 . (4.23)

Equal accretion was first discussed by Schlichting & Sari (2011), who considered the

collisionless case. Here we have shown that it applies to the collisional case.

4.2.6 Efficiency

Equation (4.23) implies that collisional accretion reaches completion (i.e. 100% efficiency

or Σ ∼ σ) when

Rcomp ∼ sα−5/2 . (4.24)

In the cold classical Kuiper belt, where the bulk of the mass is in bodies of size ∼ 100

km, order-unity efficiency could have been achieved if s ∼ 10−10R = 10−3R100cm at

the time the big bodies formed. The timescale to form these bodies assuming s was

constant throughout the accretion process is very short, tgrow ∼ 0.3 Myr (Equation

(4.15). However, it seems unlikely that s was so small throughout the accretion process.

We discuss plausible scenarios for s below.

4.2.7 Verifying Assumptions

We verify some assumptions during equal accretion.
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• Small bodies’ speed: From Equations (4.23) and (4.8),

u

vH

∼
√

sα−3/2

R
. (4.25)

Therefore, u/vH ∼ 1 when equal accretion begins, and it falls to u/vH ∼ √
α at

completion, consistent with inequality (4.5). Over the course of equal accretion, u

itself increases (assuming s is constant), reaching u ∼ 0.3R100 cm/s at completion

for Kuiper belt parameters.

• Big bodies’ speed: Big bodies are stirred by viscous stirring due to other big bodies,

and damped by dynamical friction with small bodies:

1

v

dv

dt
∼ Ω

ρR
α−2 (ΣvHv − σ) ∼ 0 . (4.26)

Hence,

v

vH

∼ Σ

σ
, (4.27)

consistent with inequality (4.4).

• Isolation mass: Bodies that accrete sub-Hill small bodies cannot exceed the isolation

mass, which is the mass of a body that sweeps up everything within an annulus of

width RH (Goldreich et al., 2004b). A body with the isolation mass has radius

Riso ∼
√

σa

ρα
. (4.28)

For Kuiper belt parameters, Riso ∼ 1000 km, using the current σ. Hence the bulk

of mass in the Kuiper belt is safely below the isolation mass.

• Oligarchy: We have implicitly assumed that ∆a . RH, where ∆a is the radial

spacing between adjacent big bodies. Otherwise, big bodies will have difficulty

accreting material that is separated by more than RH. Now, the radial spacing

satisfies 2πΣa∆a = (4π/3)ρR3, or

∆a

RH

∼ 2

3

ρ

Σa
R2α ∼ 0.006

σ

Σ
R2

100 . (4.29)
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Inserting Equation (4.23) yields

∆a

RH

∼ 2

3

ρ

σa
R3/2α−1/4s1/2 . (4.30)

Inserting Kuiper belt parameters,

∆a

RH

∼ 0.2R
3/2
100s

1/2
cm . (4.31)

4.3 Collisionally-Cooled Growth: Simulation

We simulate collisional accretion in order to verify the theory presented in Section 4.2.

Our code is a statistical particle in box code, and is described in depth in chapter 3. We

consider only a single radial zone. Eccentricity is the only dynamical variable. Random

velocities are assumed isotropic, except when the flat disk accretion formula (Equation

(4.18)) is applicable. Following Krivov et al. (2005), eccentricity and mass evolution are

decoupled. Eccentricities evolve under viscous stirring, dynamical friction, and collisions

(with prescriptions from Ohtsuki et al., 2002; Collins & Sari, 2006). Colliding bodies

undergo either conglomeration, inelastic rebound, or fragmentation, depending on the

collision speed. For the simulation we show here, collision speeds remain sufficiently

small that there is little fragmentation given the strength law we use, which is described

in Stewart & Leinhardt (2009).

We begin with 1% of the mass in 1 km bodies, and 99% in 1 cm bodies. The total

mass is 0.1M⊕, assumed to be spread evenly between 42 and 48AU. Bodies begin with

e = 10−6. All bodies have mass density ρ = 1.5 g cm−3. Note that Equation (4.19)

predicts that equal accretion begins when R & 10 km, or shortly after the beginning of

the simulation.

The evolution is plotted in Figures 4.1–4.3. The top right panel of Figure 4.1 shows

the evolution of the mass spectrum of all the bodies, and the top left panel shows a

zoom-in of the big bodies. As time progresses, the peak in the big bodies’ mass spectrum
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moves to larger R and Σ. The relation between the values of R and Σ at the peak agrees

with the equal accretion prediction (Equation (4.23)). With s ∼ 1 cm, the big bodies

should reach 105 km at completion (Equation (4.24)). However, this simulation does not

reach completion because of the code’s requirement that there be ≥ 1 largest body, which

prevents growth beyond ∼ 2000 km for this simulation.

The bottom panels of Figure 4.1 show the eccentricities of all bodies in the simulation.

Figure 4.2 shows the eccentricity of just the small (1 cm) and big bodies over the course

of the simulation, plotted versus the big body size. For the purposes of the plot, big

bodies are taken to be of size Rstir, where we define Rstir to be the size of the bodies

that contribute the most stirring (per logarithmic bin); it lies very close to the peak

of the mass spectrum at large sizes. In accordance with Equations (4.25) and (4.27),

throughout equal accretion both small and big bodies are sub-Hill with respect to the

big ones. As a result, growth due to small bodies is determined by Equation (4.6), and

growth due to big bodies is determined by Equation (4.18). In fact, from Figure 4.1, the

big bodies that lie within a decade or so in R of Rstir are all sub-Hill with respect to the

Rstir bodies, and hence all accrete at the fast flat disk rate of Equation (4.18). The valley

to the left of the big body peak in the top panels of Figure 4.1 is due to the efficient

accretion of these intermediate-sized bodies onto the bodies at the peak.

Figure 4.3 shows the ratio of small body (<cm) to big body accretion onto bodies

of size Rstir. As Rstir grows over the course of the simulation, this ratio remains nearly

unity (Equation (4.22)), hence confirming equal accretion.

4.4 Discussion

In Section 4.2 we presented our model for collisionally cooled growth (CCG), and in

Section 4.3 we verified the model with a simulation. Here we address whether the model

can explain the Kuiper belt. We first list the model’s two primary shortcomings.
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• Size of small bodies, s: Our main result is that collisional growth produces bodies

of size R ∼ sα−5/2 with order-unity efficiency (Section 4.2.6). Hence the classical

KBO’s could have formed out of a “minimum mass Kuiper belt disk” (i.e. σ smaller

than the minimum mass solar nebula value by a factor of 102 ∼ 103) if s ∼ 10−3 cm.

More generally, if one demands an efficiency ǫ < 1, one requires that s ∼ 10−3ǫ−2 cm

(Equation (4.24)). Although the timescale for formation of KBO’s from such small

bodies is reasonable (Equation (4.15)), it may not be case that small bodies were

always cm-sized or smaller. Rather, bodies might have formed larger3 and then

been continually ground down to smaller sizes by disruptive collisions. For the

CCG model to apply, it is only required that s was small when the current Kuiper

belt bodies achieved their last doubling in size. Collision speeds at completion are

∼ 0.3 cm/s for ǫ ∼ 1 (Section 4.2.7). While such speeds might seem too small to

break down bodies, there are around α−1 ∼ 104 collisions in the last doubling time

of bodies of size Rcomp (Equations 4.13 and 4.15). Cratering disruption may be

important.

• Size spectrum: The size spectrum that our model produces is highly peaked at

large sizes (Figure 4.1). This is in contrast to observations of the cold classical belt

which suggest that, while the bulk of the mass is in objects of size ∼ 100 km, for

sizes larger than that

dΣ/d ln R ∝ Rn, where n ∼ −1 (4.32)

(e.g., Fraser et al., 2010).

We argue here that despite the above shortcomings, the CCG model is likely preferable

to the collisionless growth model (Kenyon & Luu, 1998; Schlichting & Sari, 2011). In

collisionless growth, big bodies form with an efficiency ∼ 10−3. In that model, the initial

3For example, in the model of Goldreich & Ward (1973), bodies form with size s ∼ α−3/2σ/ρ ∼ 10 m
in a minimum mass Kuiper belt; see also Appendix C of Goldreich et al. (2004b).
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surface density in the Kuiper belt must have been & 100 times what it is today, all in

small bodies of size s & 1 km. The presence of these bodies has shown to be in conflict

with models of Neptune’s migration (Gomes et al., 2004), and survival of long period

binaries (Parker & Kavelaars, 2012). Furthermore, even the most optimistic collisional

destruction models have difficulty removing all the small bodies (Pan & Sari, 2005).

How can the CCG model be made more consistent with the observed properties of the

Kuiper belt? One possibility is that u was excited by nearby planets more than it was by

Kuiper belt objects, since it has been suggested that the planets underwent violent orbital

instabilities in the early solar system (e.g., Thommes et al., 1999; Goldreich et al., 2004b;

Levison et al., 2008). That could have been responsible for smaller sizes s. Support for

this conjecture is provided by the fact that at the end of accretion v must have been much

smaller than it is today (either in the CCG model or the collisionless model). The only

plausible mechanism to stir up v is by some form of external stirring, either by planets or

planetary embryos that have since been lost. That stirring might have stirred u, and hence

broken down s to very small sizes. Such stirring might break the superthin condition,

and in chapter 5, we show this reduces the size at which Σ ∼ σ to R ∼ α−2s, thus

requiring only nice millimeter sized, chondrule like small bodies (Mason, 1960; Weisberg

et al., 2006) to produce ∼ 100 km large bodies. However, we leave serious consideration

of planet stirring to future work. As for the size spectrum, it is possible that processes

that we have not considered, such as binary formation, could play a role in altering the

size spectrum. An alternative possibility for resolving the discrepancy between CCG and

observations is that some of the rates we have used for growth or viscous stirring, for

example, might be incorrect. We have relied on expressions in the sub-Hill regime, which

have not been thoroughly tested by numerical simulations. For example, semicollisional

accretion (Schlichting & Sari, 2007) might play a role, or the flat disk formula of Equation

(4.18) might not apply if external planets stir up the big bodies. Of course, these details

will alter our quantitative conclusions, and each should be explored in turn. Nonetheless,
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we suspect that our qualitative conclusion will remain—that Kuiper belt objects were

formed with order-unity efficiency.
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Figure 4.1: The evolution simulation, plotted as mass distribution (top two panels) and

eccentricity (bottom). The red lines are plotted at 10, 20, 40, and 80 Myr, where the

last line is thick. The left panels are the same as the right, but zoomed in to the big

bodies. The peak of the mass distribution nearly obeys Equation (4.23), plotted as a

dashed blue line. The surface density Σ (which here includes all bodies, big and small)

is normalized by the total surface density σ0 ≡ 0.0016 g/cm2. At around 80 Myr, when

the largest body is ∼ 1000 km, a numerical artifact appears as the largest mass bin is

required to have 1 body (hence the localized spike). In the bottom eccentricity plots, the

green line shows the eccentricity corresponding to 2.5 vH, which is approximately where

the formulae that we use in our code (from Ohtsuki et al., 2002) transition from sub-Hill

to super-Hill accretion. Both small bodies (<cm) and big ones are sub-Hill with respect

to the bodies near the peak of the mass spectrum. Small bodies are accreted onto those

bodies near the peak according to Equation (4.6); most of the big bodies that fall below

the 2.5 Hill line are accreted according to Equation (4.18), because they satisfy the thin

disk requirement. 117
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Figure 4.2: The eccentricities of small cm bodies (red line) and big Rstir bodies (green

line) over the course of the simulation, plotted versus Rstir. Here, Rstir is the radius of

the bodies that contribute the most to the stirring, and lies near the peak of the mass

spectrum. The blue dotted line line shows the trans-Hill eccentricity relative to bodies of

size Rstir. During equal accretion, both big and bodies are sub-Hill, with the small bodies

becoming increasingly sub-Hill as time—and Rstir—proceed (Equation (4.25), and the big

bodies becoming less sub-Hill (Equation 4.23). The spike at the end (Rstir ∼ 2000km)

occurs because the biggest body is prevented from growing by the requirement that there

be at least 1 biggest body (chapter 3).
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to the f ∼ 1 equilibrium, confirming equal accretion.
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Chapter 5

Generalised Collisionally Damped

Conglomeration

This chapter is a modified version of a draft publication. The research was done in

conjunction with Dr. Yanqin Wu, and Dr. Yoram Lithwick. It is reproduced here with

their permission.

5.1 Background

Dust in the protostellar nebula grows from 10−15 gram interstellar grains to terrestrial

planets (or gas giant cores) of up to 1028 grams. Across such a large dynamic range of

masses, many physical processes are important to the growth. There is not yet a good

understanding of how these processes operate, or even necessarily what these processes

are.

Small dust grains stick efficiently. While dust grains are small enough to be tightly

coupled to the protostellar gas, they encounter other dust grains at low impact velocity.

At low impact velocities, grains adhere by intermolecular forces, and grow.

Growing grains begin to decouple from the gas. Due to pressure support, gas orbits

at a lower velocity than solids. Partially coupled bodies orbit at a velocity that depends
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on the degree of coupling - this means that impact velocities are necessarily high unless

the grains are quite similar in size. Other interactions between the gas and dust (such

as sedimentation) may exacerbate or mitigate this effect (e.g., Brauer et al., 2007, 2008).

Gas drag causes bodies to spiral into the central star on short timescales. The poor

sticking combined with the short lifespan is known as the “meter size problem”, as it

occurs at roughly meter scales in a typical disk.

Solutions to the meter size problem rely on bringing together large numbers of sub-

meter sized particles so they can collapse into a single body by mutual gravity (when the

bodies are still far too small for pairwise sticking by gravity to be effective). Pioneering

models of such processes concentrated particles towards the midplane of the disk, hoping

the gas could be ignored once Σdust/Σgas ≫ 1 (Safronov, 1969; Goldreich & Ward, 1973).

Although subsequent results showed the dust could not become sufficiently concentrated

in this way (Weidenschilling, 1980), the general form of direct collapse from centimeters

or less to kilometers or more by concentration of bodies remains favoured. More recently

models have used the interplay between dust and gas to concentrate the dust (Youdin

& Shu, 2002; Cuzzi et al., 2008), which has been shown to planetesimals in simplified

numerical experiments (Johansen et al., 2007).

The size of these primordial planetesimals is not well constrained. Early linearized

analytic estimates tended towards kilometer scales. More recently, numerical simulations

have produced objects of ∼ 100 kilometer scale. In both cases, it is unclear how much

stock should be placed in the quantitative results. Johansen et al. (2011) for instance,

produce bodies of 1023 ∼ 1025 grams. They are unable to resolve bodies below ∼

1022 grams due to the gravitational softening length, however. Other simplifications may

also impact the qualitative results (e.g., the small particles are 40-80 cm in size).

After formation, planetesimals are believed to grow by pairwise collisions. This was

simulated by Greenberg et al. (1978). They found that growth was inefficient, with

most of the mass remaining at the starting size of one kilometer. Many subsequent
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simulations have refined the physics (Wetherill & Stewart, 1993; Kenyon & Luu, 1998;

Bromley & Kenyon, 2006; Ormel et al., 2010; Schlichting & Sari, 2011), however, the

essential conclusions have not changed substantially during these refinements. Results

diverge between the inner and outer solar system at this point. In the outer solar system,

growth sputters out once the largest body is ∼ 103 kilometers. In the inner solar system,

the mass surface density is ∼ 103 times that of the outer solar system, and the orbital

time is 10−2 that of the outer solar system, and growth proceeds to terrestrial planets in

∼ 108 years. In the outer solar system, the largest body tends to be 1 − 3 × 103 km at

1010 years (Kenyon & Bromley, 2008).

For a long time, the coagulation models matched the observations well. The largest

trans-Neptunian objects are 103 km, and the total mass is 10−3 MMSN. Recently, how-

ever, serious challenges have appeared that question that model. In this chapter, we

discuss how to address the challenge posed in chapter 2, where we showed that extrasolar

disks have MMSN type surface densities in 10 ∼ 100 km sized bodies, a result not

predicted from the pairwise coagulation model (chapter 3).

5.2 Analytics

In our analysis, we use the order of magnitude expressions and symbols of Goldreich et al.

(2004b). We repeat them here for reference. They consider bodies of two sizes, small

and large. Small bodies have size s, velocity dispersion u, and surface density σ. Large

bodies have size R, velocity dispersion v, and surface density Σ. All bodies have mass

density ρ, and size dependant specific energy for catastrophic disruption Q∗ (we use the

Q∗ of Stewart & Leinhardt, 2009). Large bodies grow by accreting small bodies at that
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rate:

1
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Large bodies grow by accreting large bodies at the rate:

1

R

dR

dt
∼ ΣΩ

ρR
α−1































(α) v > α− 1
2 vH ,

(

vH

v

)2
α− 1

2 vH > v > vH ,

α− 1
2 vH > v .

(5.2)

Note that in this case, we’ve assumed the limit where large bodies become superthin

when sub-Hill to each other (Ida & Makino, 1992). We also discuss the limit where large

bodies remain isotropic, in that case the growth equation is the same as for small bodies

(i.e., equation 5.1). Large bodies evolve in velocity by viscous stirring from other large

bodies, this has the form:

1

v

dv

dt
∼ ΣΩ

ρR
α−2















(

vH

v

)4
v > vH ,

(

vH

v

)

vH > v ,

(5.3)

and they are cooled by dynamical friction from small bodies:

1

v

dv

dt
∼ −σΩ

ρR
α−2















(

vH

u

)4
u > vH ,

(1) vH > u .

(5.4)

The small bodies, meanwhile, are heated by viscous stirring

1

u

du

dt
∼ ΣΩ

ρR
α−2















(

vH

u

)4
u > vH ,

(

vH

u

)

vH > u .

(5.5)

and they are cooled by mutual collisions

1

u

du

dt
∼ −Ωσ

ρs
. (5.6)
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Note that all of these are presented as rate equations. We may refer to the time scale

of a process, τ , which is the inverse of the above rate.

5.3 Collisional Physics

There are two main observations we hope to address here. First, we know that the

brightest extrasolar debris disks (with fractional luminosity ∼ 10−3 ∼ 10−4) have 1 ∼

10M⊕ in ∼ 10 ∼ 100 km objects (chapter 2). Secondly, such disks are common, ∼ 15% of

solar type stars have bright disks (Trilling et al., 2008). Thus any model of conglomeration

of planetesimals should produce ∼ 1 ∼ 10M⊕ in ∼ 10 ∼ 100 km objects in massive (but

commonplace) disks. Less secure, but still of interest, is that the size distribution in this

regime seems to follow a power law with a differential index of 3 < q . 4 (again, see

chapter 2).

To produce a disk with ∼ 10M⊕ in ∼ 10 ∼ 100km bodies (at distances of 30-100 AU),

coagulation needs to proceed with fairly high efficiency. MMSN-type disks typically have

a comparable amount of mass to that in metals at the relevant distances (10-100 AU);

Disks may be more massive, by as much as a factor of 10. So, coagulation needs to

be & 10% efficient in producing 10+ km bodies. Debris disks typically “turn on” at

3 ∼ 15 Myrs (Currie et al., 2008). Whatever process heats the planetesimals sufficiently

that they begin a collisional cascade, bodies of a few hundred kilometers must be in place

by then.

Why is growth so inefficient? The answer lies in the collisional cross section at speeds

that are below the escape speed, but above the Hill speed. In that case, the cross section

for interaction is

πb2 = π (s1 + s2)
2

(

1 +
v2

esc

u2
rel

)

, (5.7)

where vesc is the mutual escape velocity, and urel is the relative velocity. One can find this

derived in Binney & Tremaine (1987). An orbiting bodies traverses a box of length 2πa,
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of width ∆a and of height h, at a speed urand. We can then write nm = Nm/ (2πa∆ah).

We can reasonable assume the scale height is set by the velocity dispersion, i.e., h ∼

urand/ukepler × a, and rearrange the frequency of collision equation, fc = nπb2u into the

Goldreich et al. (2004b) formulation:

1

M

dM

dt
∼ σΩ

ρR

(

v2
esc

u2

)

. (5.8)

For bodies growing by accreting much smaller bodies, u is typically set by the random

velocities of the small bodies, and the mass doubling time obeys

τdouble ∝ s−1 . (5.9)

This is the fundamental root of runaway growth (Greenberg et al., 1978). Larger bodies

grow faster than smaller ones. The larger bodies provide viscous stirring, inhibiting

the growth of smaller bodies. Bodies move apart in mass space, and fewer and fewer

(eventually only one) grow. If that body can accrete most of the mass, growth may

be efficient, but efficiently producing 10 or 100 km bodies is impossible. One proposed

solution has been to begin with all of the mass in bodies of that size (Morbidelli et al.,

2009), which is certainly effective at reproducing the size distributions observed for small

body populations. It is likely to produce difficulties for planet formation, however, as the

larger the initial size of planetesimals, the longer it takes to produce planets (Kenyon &

Luu, 1998, also see chapter 3)

If we can’t get to high efficiency by going through runaway growth, we will have to go

around it. Runaway growth only takes place when vesc > u > vHill. When α0.5 < u < vHill,

bodies grow like (Goldreich et al., 2004b):

1

M

dM

dt
∼ ΣmΩ

ρs
α−1/2

(vesc

u

)

. (5.10)

In this case, τdouble ∝ s0. Bodies grow together, and many bodies can grow to large sizes

in a reasonable time, which can result in high efficiency. Such a scenario can arise when

bodies grow primarily by accreting small bodies which undergo significant collisional
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damping (Goldreich et al., 2004a). We explore variations on that theme using the code

described in chapter 3.

5.4 Simulations

What initial conditions are appropriate for conglomeration is quite speculative. Many

meteorites (and hence many asteroids) are composed of primitive millimeter sized grains

(chondrules) (Mason, 1960; Weisberg et al., 2006). Dust growth experiments and simu-

lations suggest that dust grains might grow to centimeter scales before impacts become

erosive rather than conglomerative (Blum, 2010). Early analytic estimates of planetesi-

mal formation size placed them at ∼ 100 m ∼ 1km (Safronov, 1969; Goldreich & Ward,

1973). More recent estimates have produced larger (10 ∼ 1000 km) planetesimals (Cuzzi

et al., 2008; Johansen et al., 2011). Solar system observations suggest that post coagula-

tion primordial (i.e., not collisionally produced fragments) exist to sizes at least as small

as ∼ 50 km (Bottke et al., 2005; Sheppard & Trujillo, 2010) - and without primordial

bodies well under 100 km, luminous debris disks wouldn’t be produced at the few million

year ages we see them (see chapter 2). In rough terms, we might expect small bodies

to be 10−2 ∼ 102 cm, and large bodies to be 10−1 ∼ 103 km, most likely with some

distribution.

5.4.1 Superthin Limit

With these considerations, we begin with a standard case, which we will call “km + cm”.

We begin with 10M⊕ in 1 cm and 1 km bodies, with σcm/Σkm = 10. The bodies are

spread evenly between 42 and 48 AU. Bodies begin with e = 10−6. All bodies have mass

density ρ = 1.5 g cm−3. If a collision is catastrophically destructive, the resultant bodies

are redistributed to all smaller size bins with q = 3.5, and a fraction of the mass is lost

equal to the mass that would be distributed to sizes smaller than the smallest size bin if
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the redistribution continued to s = 0. The evolution is plotted in figure 5.1.
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Figure 5.1: The evolution of a standard system, plotted in size mass distribution (left)

and eccentricity (right). This standard system begin with 9M⊕ in cm sized grains, and

1M⊕ in kilometer sized seed planetesimals, distributed in a ring from 42 to 48 AU. All

bodies begin with e = 10−6. Thin red lines are plotted at 40, 80, 160, and 320 kyrs, the

thick red line is 640 kyrs. The peak of the mass distribution obeys equation 5.18. The

final mass distribution is not the q ∼ 3.5 of the peak, but obeys q ∼ 2.

At early times, the velocity dispersion of the small bodies is set by the balance of

viscous stirring of the km bodies and collisional cooling amongst the cm bodies. Then

balancing equation 5.5 and 5.6 gives:

u ∼
(

Σkm

σ

)
1
4
(

s

Rkm

)
1
4

vesc,km . (5.11)

For our particular choice of Σ, σ, s, and Rkm, the small grains quickly reach u ∼

5vH. With u > vH, v > vH, small bodies will have a pseudo-equilibrium velocity where

collisional damping (equation 5.6) balances super-Hill viscous stirring (equation 5.5):

u

vH

∼
(

Σs

σR
α−2

)
1
4

, (5.12)

while the large body velocity equilibrium is the balance of super-Hill viscous stirring
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(equation 5.3) and super-Hill dynamical friction (equation 5.4):

v

vH

∼
(

u

vH

) (

Σ

σ

)
1
4

∼
(

Σ2s

σ2R
α−2

)
1
4

. (5.13)

Then large bodies grow by accreting small bodies and large bodies in the ratio:

fsuperhill ∼
σΩ
ρR

α−1
(

vH

u

)2

ΣΩ
ρR

α−1
(

vH

v

)2

∼
√

σ

Σ
(5.14)

At early times, we should expect that growth from accreting small bodies is ∼ 3× as

important as that from accreting large bodies, roughly what we observe (figure 5.1).

Before long, the system enters a u < vH, v < vH phase. Then, small bodies have

a pseudo-equilibrium velocity were collisional damping (equation 5.6) balances sub-Hill

viscous stirring (equation 5.5):

u

vH

∼
(

Σs

σR
α−2

)

, (5.15)

and large body velocity equilibrium is the balance of sub-Hill viscous stirring (equation

5.3) and sub-Hill dynamical friction (equation 5.4):

v

vH

∼ Σ

σ
. (5.16)

The large bodies grow by accreting small bodies and large bodies in the ratio:

fsubhill ∼
σΩ
ρR

α−1
(

vH

u

)

ΣΩ
ρR

α− 3
2

∼
(

Σ2

σ2

s

R
α− 5

2

)−1

(5.17)

Let N be the number of large bodies. We consider two limits: If the large bodies grow

primarily by accreting small bodies, then Σ = NR3 as they grow, and Σ2/R increases (as

R5). Substituting that into equation 5.17, we find fsubhill decreases, and accretion of large

bodies becomes more important. In the second limit, the large bodies grow primarily by
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accreting each other, so Σ ∼ Σ0 is constant, and Σ2/R decreases with R. Substituting

into equation 5.17, we find fsubhill increases, and accretion of small bodies becomes more

important.

Thus fsubhill ∼ 1 is a stable point, and the system quickly moves to it (physically, it

represents equal accretion of small bodies and large bodies, also found in Schlichting &

Sari, 2011). We find excellent agreement to equal accretion in the simulation (figure 5.2).

At early times, we can approximate s, σ, and α as constants, and we obtain:

Σ ∼
√

R

s
α

5
4 σ . (5.18)

This does not predict power law size number distribution dn/dR ∝ R−q with q ∼ 3.5.

Instead, the mass peak obeys this relation. In the orderly growth regime, the smaller

large bodies grow faster, and keep up with the peak. The leeside of the distribution has

q ∼ 2 (figure 5.1).

Intermediate sized bodies exhibit a dichotomous eccentricity distribution. Bodies

at size R′ < R, which are cooled in the sub-Hill regime have a velocity equilibrium

v′ = Σ/σ × R′/R × vH. Considering large bodies of different sizes results in a Σ that

is poorly defined, but velocity inversion (larger bodies dynamically hotter than smaller

bodies) is observed in the sub-Hill large bodies (figure 5.1). In the super-Hill regime,

smaller bodies do not have a velocity equilibrium if R′ < 3
√

Σ/σR, and rise freely in

eccentricity, such that at any time, their stirring time is equal to the system age. These

bodies for a plateau in eccentricity.

In the following subsections, we explore variations on the initial s, R, Σ/σ, and σ.

Variations on s

We consider s of 1 cm, 1 mm, and 100 µm. If we substitute equation 5.18 into equation

5.15, we predict that during growth, the small body velocity dispersion should obey

u ∼
√

s

R
α− 3

4 vH . (5.19)
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Figure 5.2: Growth rate of the largest body in the simulation plotted in figure 5.1,

showing the contribution from accretion small bodies (solid red line), and from accreting

other large bodies (dashed blue lines). Our initial conditions begin with growth mainly

from accreting small bodies, but the system quickly moves to the f ∼ 1 equilibrium

(equation 5.17).

This relation is observed in simulations 5.3.

The size distributions obey the scaling implied by equation 5.18, namely that at a

given R, Σ ∝ s−0.5 (figure 5.4). During sub-Hill accretion, the accretion rate of small

bodies is proportional to vH/u, and substituting in equation 5.19, proportional to s−0.5,

as observed in the simulation (figure 5.4 is plotted when the largest body is ∼ 103 km,

which is ∼ 500 kyrs with s = 1 cm, and ∼ 200 kyrs when s = 1 mm).
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Figure 5.3: u/vH in the simulation plotted in figure 5.1, compared to a variate where the

starting size of small bodies is 1 mm. During growth, the small grain velocity dispersion

scales with R as predicted by equation 5.19, with a numerical constant of ∼ 3. During

the evolution u rises slower than vH, and growth remains quick.

Variations on R

Here we consider different starting sizes for large bodies, namely R = 100 m, 1 km, and

10km. The equilibrium solution does not depend on the starting size of large bodies, and

once the growth has proceeded far enough from R0, the mass distribution is the same

for different starting R (figure 5.5). Numerically, we find convergence to be slow, with

simulations converging when the largest body is ∼ 101.5× the starting size R0.
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Figure 5.4: The size mass distribution for the standard case plotted in figure 5.1, and the

variant where small bodies are initially s0 = 1 mm in size, plotted when the largest body

is R = 1000 km. The largest body reaches 1000 km after 500 kyrs in the cm case, and

takes 200 kyrs in the 1 mm case. The mass of large bodies scales like s−0.5
0 , as predicted

by equation 5.18.

Variations of Σ/σ

We consider starting conditions with Σ/σ ∼ 0.01, 0.1, and 0.5. The equilibrium solution

does not depend on Σ/σ, however, since total mass is kept constant, small variations

show up due to the slight variations in σ0. The simulations confirm that the outcome

depends only slightly on the initial Σ/σ (figure 5.6).
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Figure 5.5: The size mass distribution for the standard case plotted in figure 5.1, and

two cases where the initial size of the large seed planetesimals are 100 m, and 10 km,

plotted when the largest body is R = 2000 km, for initial large bodies sizes R0 = 100 m,

1km, and 10km. The largest body reaches 2000 km after 680 kyrs in the 100 m and 1

km cases, but takes 1.18 Myrs in the 10 km case. The mass distributions do converge

once R >> R0, here we find this occurs around R ∼ 102R0.

Variations on σ

The equilibrium solution is invariant in Σ/σ, and thus variations in σ result in a linear

response in Σ. Growth rates are linear in σ (equations 5.1 and 5.2), and thus growth

times are inversely proportional to sigma. This dependence is observed in simulations

(figure 5.13).
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Figure 5.6: The size mass distribution for the standard case plotted in figure 5.1 (dotted

green line), and two cases where the starting mass ratio of kilometer bodies to centimeter

bodies is ∼ 0.5 (solid red line) and ∼ 0.01 (dashed blue line), plotted when the largest

body is R = 1000 km. The simulations are plotted at 680 kyrs, 530 kyrs, and 500 kyrs,

respectively, to account for the slower growth time in simulations with lower starting σ.

The final result is very similar mass distributions.

5.4.2 Isotropic Limit

In section 5.4.1, we assumed that large bodies at sub-Hill velocity dispersions always ac-

crete each other in the superthin limit. The other limit worth considering is the isotropic

limit. In this case, large bodies accrete one another with the same cross section they

accrete small bodies with (i.e., equation 5.1). The new collisional cross section changes
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Figure 5.7: The efficiency of growth in the standard case plotted in figure 5.1 (solid red

lines), compared to a case which begins with 0.9M⊕ in cm grains and 0.1M⊕ in km bodies

(dotted green lines), and a case which begins with 0.09M⊕ in cm grains and 0.01M⊕ in

kilometer seeds. Plotted are the fraction of the total mass between 10 and 100 km (thin

lines), between 100 km and 1000 km (medium lines), and at sizes larger than 1000 km

(thick lines). Because they are scaled by Σ/σ, the three simulations are very similar.

equation 5.17 to

fsubhill ∼
(

Σ

σ

s

R
α−2

)−1

. (5.20)

The rest of the analysis remains qualitatively unchanged. Accretion of mostly small

bodies causes Σ/R to rise, and accretion of big bodies becomes more important. Accretion

of mostly big bodies causes Σ/R to fall, and accretion of small bodies becomes more

important. This factor was Σ2/R in the previous section, but the principle is the same.
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The system is again at equilibrium when fsubhill ∼ 1. The surface density of large bodies

now obeys:

Σ ∼ α2 R

s
σ . (5.21)

The size mass distribution is different at well. The most important contrast with the

superthin limit is that in the superthin limit, large bodies experience orderly growth,

where their growth time τ is linearly proportionate to their size, τ ∝ R1 (see equation

5.2). In that case, the smaller large bodies grow faster than the large ones, and they all

tend towards the same size. During growth, their mass peak moves forward, with very

few bodies left at intermediate sizes (refer to figure 5.1). In contrast, in the isotropic case,

large bodies grow uniformly, with τ ∝ R0 (equation 5.1 now applies to accreting other

large bodies), and large bodies all grow at the same rate. This makes it much easier for

small ones to fall behind, and thus the final size distribution is close to the differential

power law with q ∼ 3 that the mass peak follows during growth (figure 5.8).

The isotropic case often achives Σ ∼ σ, as this happens at R ∼ α−2s, a factor of

∼ 102 earlier in size. At that point, v ∼ u, and subsequently v > u. In this case,

equation 5.17 changes to use α−1 (vH/v)2 as the focussing factor in both accretion from

small grains, and accretion from large bodies. With f ∼ σ/Σ, the equilibrium solution

becomes

Σ ∼ σ . (5.22)

This continues until the small grains are depleted or removed. Although not plotted

in figure 5.8, the result can be seen in figure 5.10, for the s < 1 cm cases.

In the following subsections, we explore variations on the initial s, R, Σ/σ, and σ.

Variations on s

The most interesting variation is probably in s, since s appears in the equilibrium solution.

Once bodies reach the equilibrium solution, substituting equation 5.21 into equation
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Figure 5.8: The evolution of a standard system, plotted in size mass distribution (left)

and eccentricity (right). This standard system begin with 9M⊕ in cm sized grains, and

1M⊕ in kilometer sized seed planetesimals, distributed in a ring from 42 to 48 AU. All

bodies begin with e = 10−6. This system differs from the one presented in figure 5.1 in

the behaviour of large bodies, which are assumed to be isotropic, rather than superthin.

Thin red lines are plotted at 10, 20, 40, 80, 160, 320, 640, and 1280 kyrs, the thick red

line is 2.56 Myrs. The peak of the mass distribution obeys equation 5.21. Unlike the

superthin case, the final mass distribution remains close to the q ∼ 3 implied by equation

5.21.

5.15 predicts that small bodies should obey

u ∼ vH . (5.23)

This behaviour is observed in simulations (figure 5.9), for s ≤ 1 cm. At larger starting

s, the collisional destruction of the small grains begins before the equilibrium is reached.

The simulations produce roughly the equilibrium size distribution where u obeys

equation 5.23 (figure 5.10).

Once the simulations reach R ∼ α−2s, equation 5.23 no longer holds, and the equilib-

rium solution can no longer be followed. As predicted by equation 5.22, we find v > u,

and the size spectrum breaks to a q ∼ 4 power law, which is observed in the s ∼ 100 µm,
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Figure 5.9: u/vH in the standard case plotted in figure 5.8, as well as cases where the

small bodies begin with size s0 = 1 m, 10 cm, 1 mm, and 100µm. During growth,

u/vH reachs an equilibrum of ∼ 0.5 in the cm, mm, and 100 µm, cases, as predicted in

equation 5.23. In the 10 cm and 1 m cases, collisional destruction of small grains onsets

early, and the equilibrium is not reached.

and mm simulations.

Variations on R

Our equilibrium solution does not depend on the starting size of large bodies. Thus

we expect the size number distribution at large sizes will not depend on the initial size

of large bodies. We find this to be the case in simulation (figure 5.11), as long as the

starting size R0 is much smaller than size in consideration. Notably, the only significant
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Figure 5.10: Differential mass distribution (dM/ds∆s) the standard case plotted in figure

5.8, as well as cases where the small bodies begin with size s0 = 1 m, 10 cm, 1 mm, and

100 µm, all plotted after 3 Myrs. The thin blue dashed line shows the equilibrium solution

for the s0 = 1 cm case. The m and 10 cm cases do not make a good match to predictions,

owing to insufficient time in the former case, and breakdown of small grains in the latter.

Bodies reach Σ ∼ σ at approximately R ∼ α−2s. At larger sizes, equation 5.22 applies,

and bodies produce that size mas spectrum in the s0 = 100 µm, and s0 = 1 mm cases.

variation is that the R0 = 10 km simulation has much more mass in 10 - 100 km objects.

Thus we conclude that simulations converge before 10R0.
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Figure 5.11: Mass fraction in 1000+ km (thick lines), 100 km - 1000 km bodies (medium

lines), and 10 km - 100 km (thin lines), for the standard case plotted in figure 5.8 (dotted

green lines), as well as cases where the large bodies begin at size R0 = 10 km (solid red

lines), and at R0 = 100 m (dashed blue lines) The lines lie atop one another for the

different R0, apart from the R0 = 10 km, mass fraction in 10 km - 100 km bodies, where

initial conditions persist. The large end size distribution follows the equilibrium solution

(equation 5.18), and is independent of R0.

Variations on Σ/σ

The equilibrium solution does not depend on the primordial Σ/σ. Simulations move

towards the equilibrium solution, and the final results depend only very weakly on the

initial conditions (figure 5.12).
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Figure 5.12: Differential size mass distribution for the standard case plotted in figure 5.8

(dotted green line), a case which begins with 7M⊕ in cm grains and 3M⊕ in kilometer

seeds (solid red line), and a case which begins with 9.9M⊕ in cm grains and 0.1M⊕ in km

seeds (dashed blue line), plotted at 2.5 Myrs. This is the approximate time when Σ ∼ σ,

and R ∼ α−2s, for these simulations. The initial Σ/σ has a negligible effect on the the

size distribution and growth time.

We employ constant total mass in the simulations, so different Σ/σ have slightly

different σ to start. This results in small differences in the evolution and final state.

Variations on σ

The equilibrium solution is invariant in Σ/σ, and thus variations in σ result in a linear

response in Σ. Growth rates are linear in σ (equations 5.1 and 5.2), and thus growth
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times are inversely proportional to sigma. This dependence is observed in simulations

(figure 5.13).

       
 

 108        
 

 107        
 

 106        
 

 105 
         108          107          106          105          104 

La
rg

es
t b

od
y 

(c
m

)

Time (yrs)

MMSN
10−1 MMSN
10−2 MMSN

Figure 5.13: Growth of the largest body in the standard case plotted in figure 5.8 (solid

red line), as well as cases that begin with 0.9M⊕ in cm grains and 0.1M⊕ in km seeds

(dotted green line), and with 0.09M⊕ in cm grains and 0.01M⊕ in km seeds (dashed

blue line). The growth is linearly faster with σ, as is expected from the rate equations

(equations 5.1 & 5.2).

Despite the different timescales, the final size number distribution is approximately

the same in the three runs (figure 5.14). A slight offset appears, and becomes large in

the 1% MMSN simulation when R ∼ 103 km, as the surface density in the largest bodies

becomes close to one body per bin (or 18 bodies per size decade).
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Figure 5.14: Mass fraction in 1000+ km (thick lines), 100 km - 1000 km bodies (medium

lines), and 10 km - 100 km (thin lines), for the standard case plotted in figure 5.8 (solid

red lines), as well as cases that begin with 0.9M⊕ in cm grains and 0.1M⊕ in km seeds

(dotted green lines), and with 0.09M⊕ in cm grains and 0.01M⊕ in km seeds (dashed

blue lines). The final size number distributions are substantially similar, scaled by the

total mass.

5.5 The End of Growth

Growth cannot continue to obey the equilibrium solution forever. Barring other processes,

the system reaches Σ ∼ σ. At that point v ∼ u ∼ vH, and growth switches to a runaway

mode. The presence of collisionally cooled grains means growth is still different from

collisionless approaches. The simulations find v & u, and v sets the encounter velocity
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and gravitational focussing factors. While Σ ∼ σ, the two groups approximation does

not make a prediction for v, as the cooling and heating terms are comparable. Only full

numerical integrations can solve for v (and through it, u).

In integrations, we find that v and u both rise (with v > u), until small bodies destroy

each other in collisions. When bodies with masses m1 and m2 collide at a speed v, they are

catastrophically disrupted if the specific kinetic energy Q = (m1m2) / (m1 + m2)
2 v2 ex-

ceeds a threshold specific energy Q∗. Thus small bodies have:

u ∝
√

Q∗ , (5.24)

which we observe in simulations (figure 5.15). Problematically, this allows small

grains to break down to the blow-out size (∼ µm for a sunlike star), while the radial

optical depth through the disk greatly exceeds value (typical values are ∼ 102). Thus

radiation blow out should be prevented by the shadowing of other grains. Our treatment

of these small grains in this case is problematic. If the small grains are ∼ µm sized, and

still contain 10 + % of their primordial mass, they collide & 102 times per orbit. With

eccentricity e ∼ 10−3, they should dissipate a total amount of energy equal to the orbital

energy in a few orbits - the single zone, constant a treatment should fail, due to viscous

spreading. Such viscous spreading might be sufficient to remove the small grains.

Poynting-Robertson drag is also significantly compromised as a dust removal mecha-

nism due to shadowing. It would operate effectively on the first optical depth of grains.

On long timescales it might clear dust grains, but even at ∼ µm sizes, the time to remove

the grains would be & 108 years. Thus it cannot be regarded as a viable option.

Goldreich et al. (2004b) suggested that once large bodies were hot, small grains might

recool, allowing them to form a second generation of planetesimals. We did not observe

recooling in any simulations. This is because the small grains follow a pseudo-equilbrium

u ∼ √
Q∗. To achieve recooling, grains must be small enough that cooling is more

important than heating. With the pseudo-equilibrium, this does not occur. If grains

were heated to a u such that they were catastrophically destroyed to a size smaller than
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Figure 5.15: Eccentricity of the small bodies as a function of their size, in the 10−2 MMSN

simulation discussed in section 5.4.2. Bodies begin at 1 cm and e = 10−6. As the large

bodies grow, the small grains are heated until their collisions are destructive, this occurs

when the largest body is ∼ 103 km. At smaller sizes, cooling is increased, but once

large bodies have grown enough, the small grains are again hot enough to be destroyed

in collisions. This continues until the small bodies are removed from the simulation. In

10−2 MMSN simulations, such removal may be caused by radiation pressure. At higher

mass densities, the radial optical depth of dust grains exceeds one, and blow out should

be ineffectitive.

the pseudo-equilibrium size before u ∼ √
Q∗, recooling should occur. This requires the

collision time of small grains to be longer than their heating time (so u rises rapidly

between individual collisions), and thus would require s >> (σ/Σ) α (u/vH). To achieve
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recooling when Σ ∼ σ, and thus u ∼ vH, the simulation would require s > αR, In

practice, we find such simulations unviable as when s >> 1 cm, collisional cooling is

insufficient to enter the sub-Hill regime (figure 5.9).

Given these considerations, removal of the small dust grains remains an open problem.

The size and mass spectrum of debris disks at the 1 ∼ 1000 km sizes relevant to debris

disk evolution is set before dust grain removal takes place.

5.6 Discussion

We present a model of planetesimal formation, which we confirm with simulations. In

contrast to previous models, which begin entirely with large (∼ km) planetesimals, we

begin primarily with small grains, with a small contingent of seed planetesimals. The

inclusion of small grains results in dynamically important collisional cooling, and qual-

itatively different outcomes. While previous models had found that large planetesimals

are made with low ∼ 10−3 efficiency, this model is able to produce large planetesimals

with efficiencies of & 50%.

The higher efficiency comes from two changes in the growth. In the standard model,

the large bodies accrete small bodies at sub-escape but super-Hill velocities. In this

case, larger bodies grow faster than small bodies, and quickly run away from the group.

Consequently, the number of growing bodies is small, and growth is inefficient. With

collisional cooling, the velocities are sub-Hill, and large bodies all grow at the same rate.

With many more accreting bodies, growth is more efficient. In addition, the cross section

for accretion is larger at sub-Hill velocities than super-Hill velocities, and each large body

accretes more rapidly.

In this model, growth is substantially faster than in the standard kilometer plan-

etesimal model. In those models, producing 103 km bodies takes 107 − 108 years at

30 ∼ 50 AU (see, e.g., chapter 3 Kenyon & Luu, 1998; Kenyon & Bromley, 2008; Ormel
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et al., 2010). In this model, ∼ 103 km bodies arise in roughly 106 years. This model can

be adapted towards the formation of giant planet cores to address those giant planets

already discovered at >> 10 AU (Marois et al., 2008; Kalas et al., 2008).

In chapter 2, we found that extrasolar debris disks have 3 < q . 4, and total mass

∼ 10M⊕ in 1 - 100 km size objects. There, we interpreted this as reflecting a single

population of massive disks with individual size number distributions of the form 3 <

q . 4. To fit the superthin simulation results to the extrasolar debris disk results, we

must reinterpret the extrasolar debris disk results. The analysis in chapter 2 measured

the size mass distribution at the point where bodies are entering collisional equilibrium.

It is thus compatible with a situation where the brightest disks at a given age are not a

constant population, but different populations of disks are brightest at different ages if

the brightest disks at any given age obey 3 < q . 4 in an average way when they are the

brightest disks. The superthin results thus can fit the data if growth ends at different

R in different systems, reflecting either a distribution in effective s, or if an external an

external process is responsible for ending growth. Similar considerations may also apply

to the isotropic case, but the disagreement between the isotropic accretion growth model

and the extrasolar debris disks results is marginal.
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Chapter 6

Summary

6.1 The Road Behind Us

The ultimate goal of this work has been to connect what we know about the Kuiper

belt to what we know of extrasolar debris disks. Around roughly one in six stars of

comparable age and mass to the Sun, bright debris disks have been detected. This disks

are ∼ 103× brighter than our own debris disk, the Kuiper Belt. How the Sun fits into

the full range of sun-like stars will not be known until more sensitive instruments can

detect the full range of debris disks that exist in nature. In the interim, it is interesting

to ask: “What sets these bright debris disks apart from the Sun?”

To this end, we have investigated the size number distribution of planetesimals in

extrasolar debris disks (chapter 1). Using a sample of observed extrasolar debris disks,

we constructed a pseudo-evolution sequence of the disks, which we fit to an analytic

model. Using the model, we we able to infer some parameters of the large (10 ∼ 100 km)

planetesimals that are the parents of the dusty debris. We found that extrasolar debris

disks have surface densities in 10 ∼ 100 km bodies comparable to the Minimum Mass

Solar Nebula, with roughly equal mass per size decade.

The brightest extrasolar debris disks have ∼ 103 times the mass of the Kuiper belt.
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That the most massive extrasolar debris disks have masses comparable to that of the

Minimum Mass Solar Nebula may seem like a natural situation, but planetesimal growth

models have predicted that the efficiency of growing the large planetesimals needed is

very low, ∼ 10−3. In those models, Minimum Mass Solar Nebula disks produce Kuiper

belts, and it is not possible to produce disks with ∼ 103× the mass of the Kuiper belt.

We constructed a code to simulate the growth of planetesimals (chapter 3). We used

that code to confirm the previous result that growth in inefficient.

The standard model begins with all the mass in kilometer size objects. We propose

a new model, where most of the mass begins in centimeter sized grains. In this model,

collisional cooling reduces encounter velocities to sub-Hill velocities, and accretion takes

on a different form. Rather than the runaway accretion that sees a few bodies grow rapidly

and dynamically heat all the small bodies before very many can grow, our model produces

orderly growth at high speeds, and many bodies grow. This produces a high efficiency.

This high efficiency model can produce the Cold Classical Kuiper Belt from ∼ 10−1M⊕ in

its current position, eliminating the conflict between the amount of primordial mass

needed to form it and models of Neptune’s migration, and conflict between the amount

of primordial mass needed to form the CCKB and the observed survival of binary KBOs.

We also show that the same model can produce the parent planetesimal population needed

to explain our results on extrasolar debris disks, from Minimum Mass Solar Nebula-like

starting conditions.

6.2 The Road Ahead

We have shown that the current model of planetesimal growth, which begins with most

of the solid mass in kilometer sized bodies, is untenable in light of the observed properties

of extrasolar debris disks. We have proposed a new model of planetesimal growth, where

most of the mass begins in centimeter sized grains, with a seed population of kilometer
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sized bodies, and show that this model can produce debris disks in rough agreement with

both the solar system’s Kuiper Belt, and extrasolar debris disks.

This model would benefit from several improvements. The neglect of gas physics

is reasonable in the collisionally undamped case, as kilometer and larger bodies are not

strongly affected by gas, and gas clears out quickly relative to the 107 ∼ 108 years it takes

to form the large bodies. In the collisionallay damped case, centimeter grains would be

strongly affected by gas, and the timescale of 106 years means gas should be present during

the whole evolution. Gas is a particularly pernicious theoretical problem, as the gas

disk provides itself pressure support, and rotates more slowly than the circular Keplerian

velocity. Dust grains of centimeter sizes are too large to be completely coupled to the gas,

but too small to ignore the gas drag from the gas disk, thus their orbits quickly decay is a

smooth disk (Weidenschilling, 1977a). This migration may be mitigated if the centimeter

grains rain out to the midplane layer (Brauer et al., 2007), or collect in local pressure

maxima (Whipple, 1972; Klahr & Henning, 1997). The grains may also be continuously

produced by collisional destruction of larger bodies (Dullemond & Dominik, 2005), or by

the growth of smaller grains (Alexander & Armitage, 2007). Whether such mechanisms

can retain the centimeter grains for the 106 ∼ 107 years necessary for planetesimal growth

remains the subject of investigation (Brauer et al., 2007; Pinilla et al., 2012). Despite

the theoretical misgivings, the observational evidence suggests that the bulk of the grain

mass can be found in millimeter or centimeter sized grains in protoplanetary disks at a

few million years of age, which has been interpreted to mean that the small grains must

persist for millions of years, despite the prediction they should quickly migrate inwards

(Natta & Testi, 2004; Rodmann et al., 2006; Natta et al., 2007). Thus, although we

cannot properly account for the influence of a massive gas disk (which may cause dust

migration, create spatial inhomogeneities, provide turbulent stirring, etc.), the existence

of a massive disk of centimeter sized particles which persists for 106 ∼ 107 years should be

regarded as not only plausible, but a feature of the model which increases its congruence
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with observations of disks with growing planetesimals. Our inability to explain how

they persist must be taken to mean that we lack a crucial piece of physics governing

the dynamics of the centimeter sized grains. As such, this model must be regarded as

preliminary.

The issue of when large bodies become superthin remains outstanding. The signif-

icance of this effect is minimal for the collisionless case, but it is not negligible for the

collisional case, and a proper treatment must correctly account for this phenomenon. A

basic treatment might be attempted by tracking an i for our m, e bins, as full m, e, i track-

ing is computationally prohibitive. Superthinning is predicted based on the two groups

treatment, which is not always applicable to full size distributions, thus a solution must be

derived for a general case. Previous works (e.g., Ida & Makino, 1992; Rafikov, 2003) have

considered conditions appropriate to the collisionless case, so the problem is one of in-

terest in its own right for the collisional case.

Improved dust physics is also highly desirable. In the collisional evolution case, shad-

owing should prevent removal of small grains by radiation pressure, and significantly

reduce the effectiveness of Poynting-Robertson drag. At early times in the simulation,

centimeter size grains collide every 103 years and dissipate . 10−4 of their energy, and

the assumption of constant semimajor axis is reasonable. At late times µm grains collide

every ∼ 10−1 years and dissipate ∼ 10−3 of their total energy - energy loss is probably

important.

Binary Kuiper Belt Objects are providing strong constraints on the region’s evolution,

and our code is unable to address binaries at all. Binary formation, destruction, and

evolution would allow us to make much stronger statements about the properties this

model predicts for binary objects. This includes both long period binaries formed by

dynamical processes, but also short period binaries formed in giant impacts (e.g., Canup,

2005).

If the kilometer plus centimeter model applies to debris disk formation, it should also
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apply to the growth of planetesimals in the case where planets successfully form. The

core accretion model of giant planet formation has difficulties producing the necessary

cores before dissipation of the gas disk (Kobayashi et al., 2011), and the kilometer plus

centimeter case should form the needed ∼ 10M⊕ cores much faster than the kilometer

case. However, the model has not been shown to work in the presence of gas, which

must be addressed going forward. The shorter formation times and higher formation

efficiencies may also explain the presence of planets at large distances from their host

stars (Marois et al., 2008; Kalas et al., 2008), which are difficult to produce in the standard

conglomeration case (Goldreich et al., 2004a).

The solar system provides the best data for comparison. We chose to model the for-

mation of the Cold Classical Kuiper Belt because it is the cleanest of the small body

populations - it has a more certain dynamical history. However, other small body popu-

lations in the Asteroids, Jupiter Trojans, and Neptune Trojans all show similar trends to

the CCKB - a steep sloper (q > 4) at large sizes, then a turnover to a shallow q < 4 slope

at an intermediate size 10− 100 km (Jewitt et al., 2000; Jedicke et al., 2002; Sheppard &

Trujillo, 2010). As with the CCKB, the belief had been that the turnover was the result

of collisional evolution. That story has been challenged (Bottke et al., 2005; Morbidelli

et al., 2009), and must be revisited in light of this new model. In these cases, however,

interactions with the giant planets probably cannot be ignored.

The model we propose explains naturally how bright debris disks form. To form

the Kuiper Belt, we appeal to a variant of the popular model where Neptune’s outward

migration sets many of the properties of the Kuiper Belt region. The remaining ∼ 85% of

debris disks remain unexplained. An explanation may lie in a generalised version of the

story we tell about the solar system. With a model that can produce the bright disks,

asking “Why are there so many dim disks?” is the next logical step.
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Chapter 7

Appendix

7.1 Evolution of Debris Disk Properties: Analytical

Model

In the following, we present a simple analytical model that describes the time evolution

of dust luminosity and size distribution in debris disks. This model is very similar to

that described in Löhne et al. (2008), except for our choice for the size of the largest

planetesimals. In the following, we present results with arbitrary strength law and initial

size distribution, followed by numerical evaluations using the hard strength law and for

q3 = 4.

We approximate the body strength (eq. 2.5) by two broken power-laws,

Q̄D =















A
(

s
1cm

)α
s < s1

Bρ
(

s
1cm

)β
s > s1

(7.1)

where s1 is the size at which the two expressions meet. The body strength is dominated

by material strength below s1 and by self-gravity above s1. For the hard strength law

that we adopt, α = −0.3, β = 1.5 and s1 =
(

B
A
ρ
)

1
α−β cm ≈ 300 meters.

Combined with equation 2.4, the minimum size of an impactor that causes catas-
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trophic disruption is

simpactor =















(

2A
1.75e2v2

kep

)
1
3
(

s

1 cm

)1+ α
3

= k1s
κ1 s < s1

(

2Bρ
1.75e2v2

kep

)
1
3
(

s

1 cm

)1+ β
3

= k2s
κ2 s > s1

(7.2)

Here, κ1 = 0.9 and κ2 = 1.5 for our adopted strength law.

We define a break-size, s2 = s2(t), to be the size at which the time-integrated chance

of destruction per body is unity, or the optical depth for size s2 to be hit is,

τ(s2) =
torb
t

. (7.3)

Bodies larger than s2 have hardly collided and they retain their primordial size distri-

bution, while bodies smaller than s2 have collided many times, and they satisfy the size

distribution for collisional equilibrium. If s2 > s1, we adopt a size distribution that is

piece-wise continuous,

dn

ds
=































n1s
−q1 = n3s

q1−q2

1 sq2−q3

2 s−q1 s < s1

n2s
−q2 = n3s

q2−q3

2 s−q2 s1 < s < s2

n3s
−q3 s > s2

(7.4)

where q1 and q2 are the power indexes at collisional equilibrium.1 They are 3.5 (Dohnanyi,

1969) if the size ratio between the impactor and the target is constant. Given equation

2.6, we have q1 = 3.6 and q2 = 3.0 for the hard strength law. This piece-wise size

distribution breaks down near the blow-out size due to an abrupt deficit of small bullets.

A more accurate derivation for the size distribution can be obtained by assuming that

the mass loss rate is constant with size, as is carried out in Strubbe & Chiang (2006).

The size distribution shows a flare-up toward the blow-out size, and the magnitude of

the flare-up depends on, among other things, the value of eccentricity. Our analytical

results obtained based on equation 7.4 should be regarded as illustrative.

1Numerical simulations (Thébault et al., 2003; Krivov et al., 2006; Thébault & Augereau, 2007)
indicate that the collisional distribution is likely wavy and deviates from a simple power-law, due to the
steep fall-off in particle number below the blow-out size. We ignore this complication in the analysis
here. But it is included in our numerical results.
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We first obtain the evolution of s2 with time. When s2 < s1, i.e., collisions involve only

bodies bound by the material strength, optical depth for destruction at s2 is determined

by integrating over all its possible bullets,

τ(s2) =
n3s

q1−q3

2

2πa∆a

∫ s2

k1s
κ1
2

π (s2 + s)2 s−q1ds =
n3

2a∆a

1

q1 − 1
k1−q1

1 sq1−q3+2+κ1−κ1q1

2 . (7.5)

Substituting this into the definition for s2 (eq. 7.3), we obtain

s2 ∝ t
1

−q1+q3−2−κ1+κ1q1 (7.6)

This yields s2 ∝ t1.4 for our parameters.

Once s2 > s1, we perform the same exercise and obtain,

s2 ∝ t
1

−q2+q3−2−κ2+κ2q2 (7.7)

or s2 ∝ t0.5 for our parameters. So at early times, the break size rises steeply with time,

due to an abundance of small bullets; while at late times, the break size rises with time

more gradually due to the relative paucity of bullets. These two scaling relations are

observed in our numerical results (Figure 2.2).

Now we proceed to derive the scaling of disk luminosity with system age. We let

the infrared luminosity to be that portion of the starlight that is intercepted by debris

particles. This is directly related to the total surface area of all particles, which is mostly

contributed by particles around smin.
2 The fractional luminosity is therefore,

LIR

L∗

≈
∫ s2

smin
πs2 n1s

−q1ds

4πa2
≈















n3

4a2(q1−3)
sq1−q3

2 s3−q1

min s2 < s1

n3

4a2(q1−3)
sq1−q2

1 sq2−q3

2 s3−q1

min s2 > s1

(7.8)

So the evolution of luminosity is dictated by the evolution of s2 with time. In particular,

at late times (when s2 > s1), the fractional luminosity decays with time gradually,

LIR

L∗

∝ sq2−q3

2 ∝ t
q2−q3

q2−q3+2+κ2−κ2q2 . (7.9)

2The upper bound of the integration is chosen to be s2 but it is of no importance.
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Again, for our set of parameters, LIR/L∗ ∝ t−0.5. When q3 takes different values,

LIR/L∗ ∝ t(q3−3)/(2−q3) and scales as t−1/3, t−1/2 and t−2/3 for q3 = 3.5, 4, and 5 re-

spectively.3 This forms the basis on which we decipher the primordial distribution of

planetesimals.

To understand the dependence of the fractional luminosity on a range of parameters,

we return to equations 7.8, 7.7 and 7.5, retaining all the neglected constants and obtaining

the following expression,

LIR

L∗

≈



















n3

4a2(q1−3)

[

2a∆a
n3

(q1 − 1) torb
t

(

2A
1.75e2v2

kep

)
1
3
(q1−1)

]

q1−q3
2+κ1−κ1q1+q1−q3

s3−q1

min s2 < s1

n3

4a2(q1−3)
sq1−q2

1

[

2a∆a
n3

(q2 − 1) torb
t

(

2Bρ
1.75e2v2

kep

)
1
3
(q2−1)

]

q2−q3
2+q2−q3+κ2−κ2q2

s3−q1

min s2 > s1

(7.10)

Substituting our nominal values for the indexes (κ1 = 0.9, κ2 = 1.5, q1 = 3.6, q2 = 3.0,

q3 = 4.0), we simplify the dependency for luminosity into (for at late times when s2 > s1),

LIR

L∗

∝ t−0.5M0.5
0 a−3.6

(

∆a

a

)0.5

e−
2
3 M

5
6
∗ B

1
3 A− 5

6 s−0.6
min , (7.11)

where M0 is the total mass of the disk, a its radius, ∆a/a its fractional width, e the

eccentricity of particles, M∗ the central stellar mass, smin the blow-out size, and A,B the

strengths. This relation illuminates how our procedure, using luminosity to infer M0,

can be affected by various parameters. For example, the actual position of the belt is a

piece of essential information, while other values should be known roughly to within a

factor of a few to avoid gross mis-estimate.

Equation 7.10 can also be used to illustrate the effect of a time-varying eccentricity

on our estimate for q3. At a given dust luminosity, the inferred initial mass scales with

the system age and the eccentricity as

M0 ∝ tq3−3e
4
3
(q3−3). (7.12)

3Note that in the case of q3 = 3, the luminosity decreases with time logarithmically. For algebraic
simplicity, we exclude this case from the following discussion.
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We now consider the effect of a time-varying e. Let the plantesimals be stirred with

a time-dependence of e ∝ tγ. We define a q̄3 as the value of q3 one obtains by taking a

constant eccentricity (in which case M0 ∝ tq̄3−3). The true q3 is related to it as

q3 = 3 + (q̄3 − 3)

(

1 +
4

3
γ

)−1

. (7.13)

So for γ = 1/4, q̄3 = 4, we get the true q3 = 3.75.

Numerically we find a weaker dependency on γ. This is related to the afore-mentioned

flare-up near the blow-out size. If instead of equation 7.4, we make the simplifying

assumption that the mass loss rate is the same at blow-out size as at other sizes, but that

the micron grains are destroyed by similar grains (as opposed to smaller ones), we find

that the dust luminosity is proportional to the total number of blow-out grains, while

the mass loss rate is proportional to the square of this number. As a result, we write

LIR

L∗

∝ Ṁ1/2. (7.14)

From this, we derive the dependence of dust luminosity on time and on eccentricity that

are slightly different from those presented in equations 7.9, 7.11, 7.12 and 7.13. For

instance, in contrast to equation 7.13, the dependence of q3 on γ is logarithmic.

7.2 The Insignificance of Assuming Superthinness or

Not in the Collisionless Case

In chapter 3, we assume that large bodies accrete have inclinations that are comparable

to their eccentricities. It is known that in some limits, this is untrue for large bodies with

subhill velocities dispersions. In that case, it may be more accurate to assume i ≈ 0◦ Ida

& Makino (1992); Rafikov (2003). To test the significant of this, we modify our code to

use the i = 0 cross section for large bodies if they meet two conditions:

• Their velocity dispersions are less than the hill velocity of the size of body which

provides the most viscous stirring
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• Their velocity dispersions are less than their own hill velocities

Encounters which meet these two conditions are treated as superthin, rather than thin.

We perform two simulations using the standard parameters for our simulation in chapter

3. Each simulation begins with a disk of 1013 bodies with radius s = 1 km, density

ρ = 1.5 g cm−3, at semimajor axis a = 45 AU, with a semimajor axis spread ∆a = 6 AU,

and starting eccentricity e0 = 10−7. The results are plotted in figure 7.1. The two

simulations are nearly identical.

Why are the results so similar? The enhancement in collisional cross section is vH

v
,

which can be as much as 102, but is often much less. With a surface density in large

bodies of 10−3 ∼ 10−4, accretion of other large bodies is still insignificant when enhanced

by a typical factor of ∼ 10 (compare to figure 3.12).

7.3 Two Groups From One?

We assume a two starting size condition. To justify this, we suggest that the efficiency

for planetesimal formation may be low. Of course, our understanding of planetesimal

formation is limited, and this assumption may not hold. As a possible alternative, we

consider whether two populations could arise from a single population.

Previous work on the growth of planetesimals finds the growth is highly inefficient.

Most of the mass remains in the starting size bodies. Once large bodies are produced,

the starting size bodies break down. If the conditions during breakdown are favourable,

this might produce small grains which collisionally cool.

As a test case, we begin with meter sized bodies. To facilitate collisional cooling of

products, bodies that undergo catastrophic disruption are broken into two equal mass

pieces, rather than a full size distribution. Otherwise, the initial conditions are the same

as other simulations presented here, 10M⊕ between 42 and 48 AU, with e = 10−6.

Early time growth proceeds similarly to the collisionless case, as described in chapter
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Figure 7.1: Comparison of two simulations with begin with 10M⊕ in kilometer sized

bodies, with a = 45 AU, ∆a = 6 AU, and initial eccentricity e0 = 10−7. We plot the

size mass distributions at 5, 10, 15 Myrs (thin lines), and 20 Myrs (thick lines). Two

cases are plotted. In the first, we assume that large bodies maintain isotropic velocity

dispersions (solid red lines), in the second we assume that large bodies have i ≈ 0◦ when

v < vH. The mass evolution is not significantly impacted by this choice. The lines may

be difficult to distinguish because they lie atop one another.

3. Once the largest bodies are ∼ 103 km in size, viscous stirring is sufficient to heat

the primordial ∼ m bodies such that their collisions become erosive. The size of small

bodies decreases, and their collisional cooling increases. The growth of the large bodies

increases. When the largest body is 1000 km, ∼ 0.25% of the total mass is in bodies

> 10 km. By the time the largest body is 3000 km, ∼ 2.5% of the total mass is in bodies

> 10 km. This fraction continues to rise as R increases, until the small bodies are lost.
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This mechanism is difficult to apply to the solar system small body populations, or

extrasolar debris disks, however. The growth all occurs at the largest sizes - intermediate

sized bodies were dynamically heated during the collisionless phase, and remain hot

throughout the subsequent evolution. All of the growth subsequent to the onset of

collisional breakdown occurs at the largest sizes (& 103 km) (figure 7.2).
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Figure 7.2: Differential mass per size decade for a simulation which begins with only

meter sized bodies. Growth proceeds similar to collisionless simulations, until the largest

body is ∼ 1000 km, and the primordial meter sized bodies begin to breakdown. This

onsets at about 5 myrs, the solid red line distribution. After 15 myrs (dashed blue line),

the mass fraction in 10+ km bodies has increased from ∼ 10−3 to ∼ 10−2. But the

growth is concentrated at the largest sizes. High surface densities at 10-100 km cannot

be created this way.
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The onset of the collisional cascade is set by the material strength of the meter sized

boulders. If they were much softer, the cascade would onset earlier, and high surface

densities at ∼ 1 km could be obtained. With q ∼ 4 in the collisionless case, u ∝ R
3
4 .

Catastrophic disruption requires u2 ∝ Q∗. Thus to obtain the onset of the cascade when

R ∼ 1 km, Q∗ must be reduced by 104× ∼ 105×. Such a soft strength law cannot

extend to very small sizes, or dust grains will be lost before growth occurs. Similarly, it

cannot extend to large sizes, or debris disk evolution will not fit the observed patterns4

Very judicious choice of Q∗ may allow for the recreation of kilometer plus centimeter

conditions, but must be regarded as highly contrived.

7.4 Alternate Derivation of the Isotropic Solution to

the Collisional Case

The small grains no longer obey equation 5.11. Rather than superhill stirring, they are

stirred in the subhill regime, and they obey:

vcm ∼ ΣRmax

Σcm

Rcm

Rmax

α−2vH,max (7.15)

We observed this relation obeyed in our simulation when the largest body is ∼ 106 ∼

108 cm. The largest bodies are cooled by dynamical friction from the small grains. The

smallest large bodies for which this is possible are small enough that the small grains

are superhill to them. Consequently, the subhill stirring by the largest body is balanced

against the superhill cooling by the small grains, and the large bodies remain cold as

long as they obey

Rcold &

(

Σmax

Σcm

)
4
3

α−2Rcm (7.16)

4With the reduced strength law, 1000 km bodies are catastrophically disrupted by 10 km objects. For
the massive debris disks with MMSN-eque surface densities, their primordial collision time is ∼ 106 years.
With the largest bodies in collision equilibrium, the luminosity drops off linearly in time, with a 1 Myrs
timescale (Wyatt et al., 2007b). Bright disks at late times would be impossible.
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The cold bodies growing at superhill accretion rates grow very slowly compared to

the largest bodies. Instead, what matters is which bodies grow at subhill rates. These

bodies grow together uniformly. They obey

R1 ≥
ΣRmax

Σcm

α−2Rcm (7.17)

Bodies then stop growing once they are smaller than R1 ∝ Rγ
max will fall out of the

growing population with a shallower (more top heavy) size number distribution than that

of the growing bodies. Consider that Rmax grows to (1 + ǫ) Rmax, then (1 + ǫ)2 Rmax, and

so on. During the nth such growth, bodies that were originally between (1 + ǫ)n−1 R1 and

(1 + ǫ)n R1 are deposited between (1 + ǫ)γ(n−1) R1 and (1 + ǫ)γn R1. Here R1 denotes the

smallest size of body that was cold at n = 0. The bodies grow in a uniform way, so

the size distribution is preserved with respect to their original size. Thus the number of

bodies deposited is

∆n =
n0

1 − q
R1−q

∣

∣

∣

(1+ǫ)nR1

(1+ǫ)n−1R1
(7.18)

These bodies are deposited over a size range

∆s =
(

(1 + ǫ)γn − (1 + ǫ)γ(n−1)
)

R1 (7.19)

Substitute in s =

√

(1 + ǫ)γn (1 + ǫ)γ(n−1)R1 (or rather, (1 + ǫ)n = s
1
γ R

− 1
γ

1

√
1 + ǫ), and

solve for the new size number distribution:

dn

ds
=

n0

1−q
(1 − (1 + ǫ−1))

1−q
R

(1−q)(1−γ−1)
1

(1 + ǫ)
γ
2 − (1 + ǫ)−

γ
2

s
1−q

γ
−1 (7.20)

And thus an original size distribution with power law index q0 is transformed to a power

law index of

q = (q0 + γ − 1) γ−1 (7.21)

We can combine this result with equation 7.17. If q < 4, ΣRmax ∝ R4−q
max, in which case

equation 7.16 gives γ = 4 − q. This has a scale-free equilibrium, q0 = q, which allows us

to solve equation 7.21 to get q = 3. We observe q ∼ 3 in simulations at the subhill growth
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sizes (figure 7.3). If we imagine instead that equation 7.16 applies at the minimum size

that grows, we instead get q = 13
4
. So the uncertainty here is small.
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Figure 7.3: Differential size mass distribution of the “km + cm” case after 10 Myrs.

Growth has essentially finished, as the small grains have been removed by radiation

pressure. Bodies in the ∼ 30 km to ∼ 2000 km size range obey a power law size number

law with index q ∼ 3, the scale free solution to equation 7.21.

This argument may be more simply qualified as such: In the subhill case, equation

7.15 gives vcm ∝ ΣRmax ∝ R4−q
max. Then the smallest body which accretes cm grains at

subhill velocities has a size Rd ∝ R4−q
max. Bodies smaller than this drop out of the growing

population. If q > 3, then Rd approaches Rmax as Rmax increases. The bodies which were

just larger than Rd transition to being just smaller than Rd, and stop growing. With the

loss of small bodies between Rd and Rmax, the size number distribution decreases (i.e.,
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q decreases). This continues until q = 3, at which point Rd ∝ Rmax, and the bodies grow

together in equilibrium.
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