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Abstract
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Doctor of Philosophy
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University of Toronto

2009

A (3+1)-evolutionary method in the framework of Regge Calculus, known as “Paral-

lelisable Implicit Evolutionary Scheme”, is analysed and revised so that it accounts for

causality. Furthermore, the ambiguities associated with the notion of time in this evolu-

tionary scheme are addressed and a solution to resolving such ambiguities is presented.

The revised algorithm is then numerically tested and shown to produce the desirable

results and indeed to resolve a problem previously faced upon implementing this scheme.

An important issue that has been overlooked in “Parallelisable Implicit Evolutionary

Scheme” was the restrictions on the choice of edge lengths used to build the space-time

lattice as it evolves in time. It is essential to know what inequalities must hold between

the edges of a 4-dimensional simplex, used to construct a space-time, so that the geom-

etry inside the simplex is Minkowskian. The only known inequality on the Minkowski

plane is the “Reverse Triangle Inequality” which holds between the edges of a triangle

constructed only from space-like edges. However, a triangle, on the Minkowski plane,

can be built from a combination of time-like, space-like or null edges. Part of this thesis

is concerned with deriving a number of inequalities that must hold between the edges of

mixed triangles.

Finally, the Raychaudhuri equation is considered from the point of view of Regge Cal-
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culus. The Raychaudhuri equation plays an important role in many areas of relativistic

Physics and Astrophysics, most importantly in the proof of singularity theorems. An

analogue to the Raychaudhuri equation in the framework of Regge Calculus is derived.

Both (2+1)-dimensional and (3+1)-dimensional cases are considered and analogues for

average expansion and shear scalar are found.
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Chapter 1

Introduction

The beginning of the twentieth century witnessed the development of a revolutionary

new theory called the Special Theory of Relativity. Although simple, this theory gave

a radically different view of the physics that govern our universe. It did not take long,

before Albert Einstein, to whom most of the credit for developing Special Relativity is

given, noticed that gravity does not fit well in this new realm. This marked the beginning

of a challenging era in Einstein’s life. It took him ten years to develop the General Theory

of Relativity. This geometrically beautiful theory describes gravity not as a force, as was

perceived by Sir Isaac Newton, but as the curvature of the fabric of the space-time.

Perhaps nobody has put the essence of Einstein’s General Relativity into words better

than John Archibald Wheeler:

“Matter tells space how to curve, and space tells matter how to move.”

[Misner, Thorne & Wheeler (1972)]

Einstein’s theory, although elegant, was mathematically very complicated. Einstein’s

struggle with the difficulty of the Mathematics involved in General Relativity can be

clearly seen in his own words:

“Do not worry about your difficulties in Mathematics. I can assure you mine

1
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are still greater!” 1

Einstein himself doubted that there existed an analytical solution to the complicated set

of equations that related the curvature of space-time to the distribution of energy-matter

in his theory. He was much surprised when Karl Schwarzschild first presented a unique

exact solution to his field equations for a spherically symmetric vacuum space-time. To-

day, this solution is known as the Schwarzschild solution and is well known to anyone

who has some interest in Black Holes.

Einstein’s equations consist of ten non-linear, coupled, hyperbolic partial differen-

tial equations. To date the number of exact solutions to these equations is not small

but most of these analytical solutions rely heavily on the symmetries present in the cases

they describe; consequently these solutions only depict the properties of a number of ideal

phenomena. Today however, we are interested in understanding situations devoid of sym-

metry or with complicated topologies [Misner, Thorne & Wheeler (1972)]. To decode the

hidden messages that General Relativity holds about these sophisticated problems, one

is faced with the formidable task of solving the above-mentioned system of equations

numerically.

The launch of projects such as LIGO (Laser Interferometer Gravitational-Wave Ob-

servatory) and LISA (Laser Interferometer Space Antenna) heralds a revolution in the

world of Astronomy, opening up a new window from which a totally different view of

the universe is observable [Abbott et al. 2004]. There certainly is a need to numerically

solve Einstein’s equations for many physical phenomena which could potentially give rise

to gravitational waves so that the data from these gravitational wave observatories can

be used as evidence for the existence of Black Holes and many other exotic phenomena

as predicted by General Relativity. A typical event that can be detected by LIGO is for

1Letter to Barbara Lee Wilson, Einstein Archives 42-606, (1943).
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instance the merger of two Black Holes with masses 10 times that of our Sun. We are

still nowhere close to having a precise theoretical description of how such events in cos-

mos take place. The answer might just lie within the treasure box of Numerical Relativity.

1.1 Numerical Relativity

The goal of “Numerical Relativity” is to find descriptions of space-times, with little or no

symmetries, by numerically solving Einstein’s field equations. Numerical Relativity was

born in the 1960’s with the inaugural work of Hahn and Lindquist [Hahn & Lindquist 1964].

They tried to numerically solve Einstein’s equation for two colliding black holes. They

however did not succeeded as proper techniques for obtaining such numerical solutions

did not exist at that time. The field of Numerical Relativity has come a long way since

then. The technological advancements, in particular the development of supercomputers,

during the past 50 years, have turned Numerical Relativity into a promising approach

in the quest for finding explanations to complicated relativistic phenomena. Numerical

Relativity has affected the work of both theorists and experimentalists significantly.

Numerical Relativity has two main approaches towards solving Einstein’s Field Equa-

tions: Finite Difference Methods and Finite Element Methods. Finite differencing ap-

proaches a problem by replacing all derivatives by finite differences on a numerical grid.

The solution is then advanced using a time marching method [Font 2000]. Finite differ-

ence methods have dominated the world of numerical relativity.

This thesis however is entirely centred on a promising finite element method called

“Regge Calculus” [Regge 1961]. Instead of filling space-time with a grid of points, one

approximates a space-time with a net of simplices [Sorkin 1975]. Regge Calculus, which
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is named after its developer, Tullio Regge, will be described in detail in chapter (2).

It has long been conjectured that Regge Calculus, would serve as an effecient tool

in examining situations with non-trivial topology or devoid of symmetry, two areas

that have remained rather unexplored in the context of General Relativity. The ap-

plications of Regge Calculus in Classical General Relativity however, have so far been

mostly limited to re-generating known solutions to Einstein’s equation [Wong 1971],

[Collins & Williams 1973], [Lewis 1982] and [Brewin 1987]. To our knowledge, no one

has ever attempted applying Regge Calculus to examine the evolution and properties of

an arbitrary manifold. The realm of Regge Calculus has remained largely unexplored.

This thesis is intended to bring Regge Calculus a few steps closer to being a viable tool

in Numerical Relativity.

1.2 Objectives of this Thesis and its Contributions

Our initial intent, upon commencing this thesis, was to examine the role of non-triavial

topology in the evolution of manifolds using Regge Calculus. The role of non-trivial topol-

ogy in General Relativity is not well understood as this theory only provides one with ge-

ometry or local properties of a certain manifold and gives very little information about its

global features or topology. A (3+1)-evolutionary method in the context of Regge Calcu-

lus is an ideal tool for this purpose. A closer review of the relevant literature showed that

a couple of such methods have so far been proposed. However, most of them had a number

of draw-backs (for example those used by [Collins & Williams 1973],[Brewin 1987] and

[Lewis 1982]). The most promising (3+1)-evolutionary method based on Regge Calculus,

so far presented, is known as “Parallelisable Implicit Evolution Scheme for Regge Calcu-

lus” [Barrett et al. 1997] or “Sorkin Triangulation” [Tuckey 1993]. This method however,

had faced a few obstacles as will be described in chapter (3). Although the idea behind
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the method and the algorithm to apply it to evolution of skeletonised (approximated by

simplices) manifolds appeared to be reasonable and correct, Sorkin Triangulation did not

produce the expected results when employed to re-produce known analytical solutions.

We will describe this problem in detail in chapter (4).

A close inspection of the Parallelisable Implicit Evolution Scheme (PIES) convinced

us that causality had not been included in this method properly. Causality was an aspect

that was briefly mentioned in Barrett et al.’s seminal paper on PIES but the authors did

not investigate its role deeply. In this thesis, we show how causality can be accounted for

in PIES. The notion of time was another issue that required clarification in this method.

In this thesis, we have discussed the ambiguities associated with the notion of proper

time in skeletonised space-times in detail and have introduced ways to find a sense of

lapse of time in PIES. By accounting for causality as well as obtaining an appropriate

understanding of the notion of time in Sorkin Triangulation, we succeeded in resolving

one of the biggest problems facing this method. We illustrate the success of the revised

algorithm by a numerical example in chapter (4).

Another important question that had remained unanswered at the time this thesis

started was related to the nature of the inequalities that have to be satisfied by the edges

of a lattice used in Regge Calculus. In particular, in implementing methods of Regge

Calculus, one has to ensure that the geometry inside the lattice blocks is Minkowskian

(flat with our choice of (− + ++) signature). This indeed requires that certain inequal-

ities hold between the edge lengths of a lattice. These inequalities are counter-parts of

the familiar triangle inequality in Euclidean geometry. It turns out that the number of

these inequalities is more than one. This is because one can build triangles with edges

that are different in character (for example a triangle with two space-like edge and one

time-like edge). In chapter (5), we add a number of such inequalities to the famous
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“Reverse Triangle Inequality” satisfied by triangles built out of only space-like (time-like)

edges. The results of chapter (5) are very useful in picking the correct choice of length

for edges which are freely chosen in a (3+1)-evolutionary method, corresponding to the

freedom in the choice of Lapse and Shift.

There are many aspects of Classical General Relativity that have not been explored in

the context of Regge Calculus. Examining the parameters and equations of the continuum

in the framework of Regge Calculus provides us with a better understanding of how this

numerical method works. In addition, it allows us to interpret the numerical results

obtained using Regge Calculus correctly. The behaviour of a congruence of geodesics

in a skeletonised space-time is among these aspects. It is interesting to see what the

Raychaudhuri equation, one of the most important equations in General Relativity, looks

like in the context of Regge Calculus. We have investigated this problem in chapter (6).

We find analogues to expansion and shear scalar for (2+1) and (3+1) dimensional lattice

space-times. In addition, we write the skeletonised version of the Raychaudhuri equation

in (2+1) and (3+1) dimensions. The piece of work presented in chapter (6) provides us

with deeper insight about the notion of collapse and singular state in Regge Calculus.



Chapter 2

Regge Calculus

2.1 Introduction

Regge Calculus [Regge 1961] is a finite element method introduced by Tullio Regge in

(1961). The idea behind Regge Calculus is to approximate a manifold with rigid simplices.

A simplex is the convex hull of (n + 1) affinely independent points1 in some n or higher

dimensional Euclidean space. Thus a point is the zero dimensional simplex. By joining

two points, a line segment or the 1-dimensional simplex is obtained. Joining the two

vertices of a line segment to a point not on the line segment, i.e. a point residing in the

second dimension, a triangle or a 2-d simplex is formed. H.S.M. Coxeter puts this simply

as [Coxeter 1973]:

“Any (n + 1) points that do not lie in an (n− 1)-space are the vertices of an

n-dimensional simplex.”

Figure (2.1) shows simplices of different dimensions. Each n-simplex itself, consists of

simplices of lower dimensions. In general, the number of k-simplices in an n-dimensional

simplex (k < n) is given by Nk =
(

n+1
k+1

)
. The advantage of a simplex, as a structure, is

1Let S = {p0, p1, p2, ..., pk} ⊆ Rd. A linear combination is x =
∑k

i=0 λipi for some λi ∈ R. An
affine combination is a linear combination such that

∑k
i=0 λi = 1. A convex combination is an affine

combination such that λi ≥ 1 for all i. The set of all convex combinations is the convex hull of S.

7
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Figure 2.1: Simplices of different dimensions.

that it is rigid. In other words, all the information about it is given once its edge lengths

are known.

An n-dimensional manifold can be approximated using a number of simplices of the

same dimension. The outcome of such a procedure is the so-called “Connection Matrix”

or “Incidence Matrix” which contains all the data on the edge lengths and instructions

on how different points are to be connected [Regge 1961]. Consequently, the connection

matrix contains all the information about geometry and topology of the skeletonised

space under consideration. Indeed the connection matrix conveys discrete information

similar to the continuum information conveyed by the metric. The larger the number of

the simplices, the finer the tessellation and consequently the better the approximation.

One of the best examples of this type of approximation is the so-called geodesic dome,

an example of which is shown in figure (2.2), where a 2-sphere is approximated using

triangles.
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Figure 2.2: A 2-sphere is triangulated by triangles. The curvature is concentrated on

vertices.

When a curved manifold is approximated by simplices, the goemetry is flat within each

simplex; the curvature of the manifold is concentrated on sub-simplices of dimension (n−

2) or equivalently co-dimension two. Regge calls these sub-simplices “hinges” or “bones”

and we will continue using these expressions thoroughout this thesis interchangeably. The

amount of curvature residing on a hinge is represented by the so-called “Deficit Angle”.

Figure (2.3) depicts the notion of deficit angle, or deficiency for short, on skeletonised

manifolds of dimensions two and three. Figure (2.4) visualises the deficiency residing on a

triangular bone of a 4-dimensional skeletonsied space. A positive deficit angle represents

positive curvature and a negative deficit angle stands for negative curvature.

In the continuum regime, the curvature of space-time manifests itself through the

notion of parallel transportation and the fact that the change in the parallel transported

vector depends on the amount of curvature enclosed by the loop around which it is parallel

transported. A very similar notion applies in the case of skeletonised spacetimes. If one

parallel transports a vector around a loop containing a hinge, the vector rotates by an
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ε
ε

Figure 2.3: On a 2-dimensional triangulated manifold, the curvature is concentrated on

vertices and on a 3-dimensional skeletonised manifold the curvature is concentrated on

edges.

Figure 2.4: The curvature of a skeletonised 4-dimensional manifold is concentrated on

2-d simplices or triangles.
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angle equal to the deficit of that hinge once it returns to its starting point as shown in

figure (2.5).

ε

Figure 2.5: A vector parallel transported around a loop enclosing a bone comes back to

its initial position rotated by an angle equal to the deficiency of that bone.

The situation however, is slightly more complicated in a 4-dimensional skeletonised

manifold. Suppose we are to parallel transport a vector, in a 4-d skeletonised space-

time, around a loop enclosing this triangular bone. This vector can be broken into two

orthogonal components, one lying in the plane of the triangular bone and the other per-

pendicular to it. Parallel transporting the vector around a loop enclosing the triangular

bone results in the rotation of the component that is perpendicular to the triangular

bone. The amount of rotation is equal to the deficiency of the bone. The issue of parallel

transport of a vector, along a path enclosing a triangular bone in 4-dimensions, will be

discussed in detail in chapter (6)

2.1.1 Descretised Action and Regge’s Equation

The gravitational action in General Relativity is given by:

Ig =
1

16π

∫
LG d4x (2.1)

with the Lagrangian density, LG = R
√
−g, where R stands for the scalar curvature and

g for the determinant of the metric. This action is usually accompanied by an action
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corresponding to an energy-momentum source. Thus, the general form of the Lagrangian

density in General Relativity which is used in the so-called Einstein-Hilbert action is

written as:

LEH = LG + LM (2.2)

This action is then to be varied with respect to the metric components, gαβ, to obtain

the familiar Einstein’s equations given by:

Rαβ −
1

2
R gαβ = κ Tαβ (2.3)

where κ = 8πG and the cosmological constant is assumed to be zero.

Regge showed that the relativistic action in its descretised form can be written as:

I =
1

8π

∑
k

Ak εk (2.4)

where Ak is the volume content of the kth hinge and εk is the deficiency associated with

this hinge. To find the analogue of Einstein’s field equations, one is to vary this action

with respect to the edge lengths that indeed play the role of the metric in the discretised

limit. Regge showed that if the dimension of a manifold is larger than two, one can

remarkably carry out this variation as if the deficiencies were constants [Regge 1961].

Similarly, in the continuum the variation of the Ricci tensor does not contribute to the

equations of motion [Stephani 2008].

In a 2-dimensional manifold, the curvature is concentrated on vertices or points which

do not have any volume content. The action for this case in fact produces the discrete

form of the Gauss-Bonnet theorem:

∑
k

εk = 2πχ (2.5)

where χ is the Euler characteristic and is given by χ = 2 − 2g with g representing
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the genus2. Thus for a 2-dimensional skeletonised manifold, the action is a topological

invariant. This result is of course in good agreement with the continuum limit expression

of the action given by [Hamber 2007]:

1

2

∫
R
√
−g d2x = 2πχ (2.6)

In a 3-dimensional skeletonised manifold, the deficiencies are concentrated on edges,

lk, and thus the action is given by:

(3)I =
1

8π

∑
k

lk εk (2.7)

where (3)I stands for the discretised action in three dimensions. Varying Regge’s action

with respect to edge lengths for this case results in:

∑
k

∂lk
∂lp

εk = 0 ⇒ εk = 0 (2.8)

Consequently, all 3-dimensional skeletonised manifolds are flat. This is indeed the dis-

crete analogue of the fact that Einstein’s equation have only trivial solutions in three

dimensions [Sorkin 1975].

Regge derived the skeletonised version of the field equations for a manifold equipped

with a positive-definite metric by taking the variation of equation (2.4) with respect to

an arbitrary edge-length lp. He showed that in this case the vacuum field equations are

given by:

1

2
lp

∑
k

cot θpk εk = 0 (2.9)

where θpk is the angle facing edge lp in the kth triangle sharing edge lp and εk is the

deficinecy of the kth triangle as shown in figure (2.6). In chapter (3), we will re-derive

appropriate Regge equations to be used in PIES. The revised Regge equations account

for Causality in this evolutionary scheme.

2Roughly speaking, genus is the number of holes in a manifold
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θ1

k=1

θ2

k=2

θ3
θ4

k =3

Figure 2.6: To obtain a discrete analogue to Einstein’s equation, Regge’s action is varied

with respect to the length of a certain edge. For a 4-dimensional triangulated manifold,

all the triangular bones, sharing the particular edge chosen, are included in the action.

2.2 The Action must always be real

As shown in equation (2.4), two quantities appear in the action: the area content of

the bone and the deficiency residing on this bone. On a manifold with Minkowskian

signature, which we take it to be (−+ ++), there are two main types of bones that one

usually has to deal with in analysing a problem using Regge Calculus. A space-like bone

is a bone constructed from only space-like edges, while a time-like bone is one with one

or more of its edges time-like. Switching to the language of coordinates for a moment,

the bivector representing the area of a time-like bone, which one might assume to lie in

the (t, z) plane, falls in the (x, y) plane and thus it corresponds to a real quantity:

~L = ~u× ~v (2.10)

where ~u and ~v are two edges of a triangular bone, one running in the t direction and

the other in the z direction. If a vector is parallel transported around a loop enclosing

this bone, its x and y components undergo a rotation while its t component remains

unchanged. Thus such a vector will undergo a rotation by an angle equal to the deficiency
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of the bone. Of course this angle must be real as it represents a rotation. From this simple

analysis, it is clear that the area of a time-like bone must always be taken to be real. To

achieve this purpose, Regge proposed to define the length of ~L to be given by:

4L2
tl = (~v · ~u)2 − (~v)2(~u)2 (2.11)

It is not hard to see that using this definition Ltl indeed always turns out to be a real

t

x

v

u
w

γ

α

β γ−

Figure 2.7: Time-like vector ~v as well as space-like vectors ~u and ~w shown in an arbitrary

coordinate system where the x-axis and t-axis are taken to be orthogonal. The angle

between ~u and the x-axis is β while the one between ~w and x-axis is γ.

quantity. To see this, let us take ~v to be time-like and ~u to be space-like and in the

frame of a certain observer be given by (the choice of observer is completely irrelevant as

eventually, only the dot product of the two vectors is important for us and the value of

the dot product is independent of the frame in which it is calculated) as shown in figure

(2.7):

~v = |v|(cosh αt̂ + sinh αx̂)

~u = |u|(sinh βt̂ + cosh βx̂)

The dot product of these two vectors is then clearly given by:

~u · ~v = |u||v| sinh (α− β)
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Using this dot product in equation (2.11) yields:

4L2
tl = |u|2|v|2 sinh2 (α− β) + |u|2|v|2 = |u|2|v|2 cosh2 (α− β) (2.12)

where the change in the sign of the second term comes from the fact that since ~v is

time-like, and thus |~v|2 = −|v|2.

Similarly, the bivector corresponding to a space-like edge is imaginary. This type of

bone can be thought as residing in the (x, y) plane. In this case, the temporal component

of a vector, parallel-transported around a loop enclosing such bone, undergoes a rotation

corresponding to a boost. Therefore, the deficiency of this type of bone is imaginary.

Again, to keep the action real, one is left with no choice but to assign an imaginary area

to a space-like bone. To achieve this purpose, the area of a space-like bone with edges, ~u

and ~w is defined in the customary way as:

4L2
sl = (~w)2(~u)2 − (~w · ~u)2 (2.13)

This definition produces an imaginary action as can be seen through the following anal-

ysis. Once again, one can write ~u and ~w as follows (in a given frame):

~u = |u|(sinh βt̂ + cosh βx̂)

~w = |w|(sinh γt̂ + cosh γx̂)

The dot product of the two space-like vector is then evidently given by:

~w · ~u = |w||u| cosh (γ − β)

Inserting this into equation (2.13) and simplifying, yields:

4L2
sl = |w|2|u|2 − |w|2|u|2 cosh2 (γ − β) = −|w|2|u|2 sinh2 (γ − β) (2.14)

which is clearly always negative and thus results in an imaginary bivector.
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Keeping these conventions in mind, in appendix (B), we will seek a general method of

calculating the area of a variety of time-like bones that can be constructed in Minkowski

plane. To our knowledge, there does not exist a comprehensive treatment of the area

of “Minkowskian triangles” in the literature. The advantage of the formulae obtained in

appendix (B) is that they produce the area of a time-like bone given only the length of

the edges, the sole piece of information at hand for skeletonised space-times.

2.2.1 Calculating the Deficit Angle

From the above discussion, it is clear that one piece of data required in writing the Regge

equation is the deficit angle. To calculate the deficit angle concentrated on a subsimplex

of co-dimension two, we need to find the dihedral angle subtended by the faces of each

of the simplices hanging at this bone. The deficit angle concentrated on hinge p, where

k simplices meet, is then given by:

εp = 2π −
∑

k

θk (2.15)

where θk is the dihedral angle between two (n-1)-dimensional faces of the kth simplex

hanging at bone p.

For a 2-dimensional skeletonised manifold, we need to calculate the angle between

the two edges of each of the triangles meeting at the vertex under consideration. The

trigonometric sine of the angle between two edges of a triangle in terms of its edge lengths

is given by:

sin θ =
2A

l1l2
(2.16)

where A is the area of the triangle in terms of its edge lengths which is in turn given by

Heron’s formula:

A =
√

P (P − l1) (P − l2) (P − l3) (2.17)
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In equation (2.17), P is half of the perimeter of the triangle and l1, l2 and l3 are the edge

lengths of the triangle. For higher dimensional Euclidean simplices the volume content

can be determined using a Cayley-Menger determinant which is the modern version of

Heron’s formula. In particular, the volume of an n-simplex is given by:

v2
n(s) =

(−1)n+1

(n!)2 2n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 1 1 ...

1 0 l201 ...

1 l210 0 ...

1 l220 l221 ...

... ... ... ...

1 l2n0 l2n1 ...

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
A formula similar to equation (2.16) can be used in higher dimensions as well. In

particular, in n dimensions, the trigonometric sine of the dihedral angle, subtended by

the (n − 1)-dimensional faces f and f ′ with volume contents Vn−1(f) and Vn−1(f
′), is

given by :

sin θ(f, f ′) =
n

n− 1

Vn(s)Vn−2(h)

Vn−1(f)Vn−1(f ′)
(2.18)

where Vn(s) is the volume of the n-simplex and Vn−2(h) stands for the volume content of

the bone [Hamber 2007]. This formula however is not of much use as it only determines

the sine of the angle and thus the angle cannot be measured unambiguously.

There exists however a more practical method in the literature [Hartle 1984] for the

calculation of the dihedral angle. As was mentioned earlier, any n-simplex is specified

by its n + 1 vertices, (0, 1, ..., n). Any simplex can then be spanned by n vectors, ei’s, as

shown in figure (2.8). The volume n-form associated with an n-simplex is then defined
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e
3

e
2

e
1

1

2

3

0

Figure 2.8: A simplex of dimension n can always be spanned by the n vectors.

as3:

ωn = e1 ∧ e2 ∧ ...en (2.19)

The volume Vn of an n-simplex is simply the norm of ωn and is given by:

V 2
n = (

1

n!
)2 det(ei.ej) (2.20)

where

ei.ej =
1

2
(l20i + l20j − l2ij) (2.21)

The dot product between two volume n-forms is defined as:

ωn.ω
′
n = (

1

n!
)2 det(ei.e

′
j) (2.22)

Finally, the dihedral angle between two simplices with corresponding volume n-forms, ωn

and ω′
n is given by:

cos θ =
ωn · ω′

n

Vn V ′
n

(2.23)

To obtain the correct sign for cos θ, one has to construct the volume n-forms as follows:

if ωn−1 is the volume form of the hinge, then the corresponding volume forms of the

3∧ represents the exterior product. The value of the exterior product of two 1-forms, p1 and p2, on
the pair of vectors ~v1, ~v2 ∈ Rn is defined to be the oriented area of the image of the parallelogram with
sides p1(~v1) and p2(~v2) on the p1, p2 plane [Arnold 1997].
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n-simplices, the dihedral angles between which is sought, is given by:

ωn = ωn−1 ∧ e and ω′
n = ωn−1 ∧ e′ (2.24)

where e and e′ are the appropriate vectors to build the n-simplices from the hinge. Using

the formulae mentioned in this section, the dihedral angle between any two n-dimensional

simplices sharing a sub-simplex of co-dimension two can be found. Finally, by using

equation (2.15), one can obtain the deficiency corresponding to a certain sub-simplex of

co-dimension two.

2.3 Binachi Identities in Regge Calculus

In the General Theory of Relativity, the Bianchi identities read:

R αβµν; λ + R αβνλ; µ + R αβλµ; ν = 0 (2.25)

where Rαβµν is the Riemann tensor and “;” represents the covariant derivative. One

important consequence of the Bianchi identities lies in the fact that they imply, the

Einstein’s tensor, defined as: Gµν = Rµν − 1
2
R gµν , is divergence free (here Rµν is the

Ricci tensor, R is the curvature scalar and gµν is the metric). Another important ground

where Bianchi identities play a vital role is in the context of degrees of freedom. Einstein’s

field equations as given by:

Gαβ = 8πG Tαβ (2.26)

are indeed a system of 10 coupled differential equations. These equations are to be solved

for the components of the metric, gαβ, given an energy-momentum source represented by

Tαβ. However, gαβ, are the components of the metric in some coordinate system. Con-

sequently, a change in the coordinate system induces a change in these components. As

there are four coordinate functions, there exist four arbitrary functional degrees of free-

dom among the ten components of gαβ. It should then be impossible to determine the 10

components of the metric from any set of initial data since the coordinate system to the
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future of this moment can be changed arbitrarily. Indeed Bianchi identities guarantee

this property for Einstein’s equation. The fact that Einstein’s tensor is divergence free,

i.e. Gαβ
;β = 0, implies that there are four differential identities, one for each value of α.

Consequently, only six of the Einstein’s equations are independent.

Regge showed that there exists discrete analogues to Bianchi identities [Regge 1961]

for skeletonised space-times. In particular, for a 4-dimensional skeletonised space-time,

the Bianchi identities imply that the product of the rotation matrices corresponding to all

the triangular hinges meeting at an edge is the identity transformation [Barrett et al. 1997].

The fact that the Bianchi identities have a counter-part in Regge Calculus means that

one enjoys the freedom to choose the lapse and shift4 arbitrarily when employing a (3+1)-

evolutionary method in the context of Regge Calculus. In section (2.5), we will explain, in

more detail, the consequences of the existence of a counter-part for the Bianchi identities

in the context of Regge Calculus.

2.4 (3+1)-Evolutionary Methods in Regge Calculus

A number of different (3+1)-evolutionary methods have been introduced in the context

of Regge calculus. The so-called “Prism Methods”, used by Collins and Williams and

later by Brewin, employed non-simplicial blocks to triangulate the space-time. In partic-

ular, these methods used tetrahedral blocks to tessellate the 3-dimensional hypersyrfaces

and connected the corresponding vertices, on two consecutive space-like slices, by time-

like edges. The 4-dimensional blocks formed in this procedure are in fact non-simplicial

blocks. The use of non-simplicial blocks required the introduction of additional pieces of

4The Lapse function and the Shift vector are two important notions used in the ADM formalism first
developed by Arnowitt, Deser and Misner. The ADM formalism is a Hamiltonian formulation of General
Relativity in which the space-time is foliated into a family of spatial hypersurfaces. Roughly speaking,
lapse and shift describe how two consecutive spatial laminations of space-time are connected together.
The equations of motion of the lapse function and the shift vector can be specified arbitrarily correspond-
ing to the freedom in laying out a coordinate system in space-time [Misner, Thorne & Wheeler (1972)].
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information such as diagonals of the blocks or some of the angles between the edges of

the blocks. Two types of equations arise in such approaches: “Evolution Equations” cor-

responding to the variation carried out with respect to space-like edges and “Constraint

Equations” corresponding to the variations carried out with respect to time-like edges.

In addition to the disadvantage of using non-simplicial blocks, the main shortcoming of

these methods is that the two above-mentioned types of equations are coupled such that

it is impossible to obtain local solutions [Barrett et al. 1997].

A different kind of (3+1)-evolutionary method in the context of Regge Calculus was

introduced by Barrett et al. based on a much earlier work by Sorkin [Sorkin 1975].

This method is known as “Parallelisable Implicit Evolution Scheme for Regge Calcu-

lus” [Barrett et al. 1997] and is considered to be the most successful (3+1)-evolutionary

method currently at hand. Using this approach, a given tessellated hypersurface can be

evolved by evolving one vertex at a time or in parallel for those vertices which are not

directly joined by an edge. One big advantage of this method is that it allows for ad-

vancement of any triangulation with an arbitrary underlying topology. The procedure is

such that, independent of the order of advancement of vertices, each vertex has a unique

predecessor and successor and thus the triangulation of the 3-dimensional hypersurfaces

remains intact. This approach will be described in detail in the next section.

2.5 Parallelisable Implicit Evolution Scheme for Regge

Calculus

Consider a time evolution problem in Regge Calculus and suppose that the connection

matrix is known entirely up to and including a given triangulated space-like hypersur-

face. “Parallelisable Implicit Evolution Scheme” (PIES), otherwise known as the “Sorkin

Triangualtion Algorithm” then offers us an algorithm to advance each and every vertex
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of this (n− 1)-dimensional triangulated hypersurface into the future. It is easiest to see

the algorithm at work for a (2+1)-dimensional space-time. Figure (2.9) shows a spatial

2-dimensional triangulated surface. To advance vertex A to the next surface, to be built

A

E D

F C

G B

Figure 2.9: A 2-dimensional surface obtained from foliating a 3-dimensional space-time

at a single moment of time.

“above” the one shown in (2.9), introduce a new vertex A′ “above” A, in particular in

the third dimension or temporal direction. Vertices A and A′ are then to be connected

by a “vertical edge”. It is important to note that this vertical edge does not have to be

orthogonal to the initial hypersurface. As will be explained in detail in chapter (4), this

edge must be chosen so that it lies within the future null cone of vertex A. In addition,

vertex A′ is to be connected to all vertices on the initial surface which were connected to

A directly. Thus vertices B, C, D, E, F , G are to be connected to A′ by the so-called

“diagonal edges” (The unprimed vertices are all assumed to reside on the same surface).

This results in a tent-like structure built above the initial surface as shown in figure

(2.10). The next step is to evolve another vertex, for instance vertex B, into the future.

Following a similar procedure, we introduce a vertex B′ in the third dimension and then

connect all the vertices on the initial surface (which were directly connected to B) to B′.

Moreover, we have to connect A′ to B′. A′B′ is indeed the first edge on the next surface,

the evolved version of AB. This step is shown in figure (2.11).

Suppose now that a given vertex is connected to N other vertices on the initial
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A

A’

B

C

DE

F

G

Diagonal 
Vertical

Edge
Edge

Spatial Edge

Figure 2.10: Evolution of vertex A according to the Sorkin Triangulation Algorithm or

PIES. Vertex A′ is introduced above A in the temporal direction. The edge that connects

A to A′ is known as the “Vertical Edge” in the literature. Also shown in the figure are

the “Diagonal Edges” as described in the text.

A

A’

B’

E D

G B

CF

Figure 2.11: A′B′ is indeed the evolved version of AB. The rest of the vertices can be

evolved using the same procedure.
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hypersurface. Evolving this vertex introduces N + 1 news edges: the vertical edge as

well as N diagonal edges. The construction is such that there exists a spatial edge with

known length corresponding to a diagonal edge. Therefore one, in principle, can solve

exactly for the diagonal edges. It has however been shown that this approach leads to ill-

conditioned algebraic systems [Hartle 1984]. This is where the Bianchi identities come to

the rescue. The fact that the Bianchi identities have an analogue in Regge Calculus allows

us to choose the length of four of the newly introduced edges arbitrarily. Thus, at each

vertex, one has the freedom to choose the length of four of the edges that go between a

hypersurface and its evolved version. This indeed corresponds to the freedom in the choice

of lapse and shift. The above-mentioned construction can be immediately generalised to

(3+1) dimensions. The construction here, however, is slightly more complicated as shown

in figure (2.12).

Figure 2.12: The Evolution of a vertex according to Sorkin’s Triangulation in (3 + 1)

dimensions. In a (3 + 1)-dimensional evolutionary problem, the tetrahedra comprising

the initial hypersurface each become a base to a 4-simplex.

In their seminal paper on the PIES, Barrett et al. only briefly discuss the issue of
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causality and place a few restrictions on the type of edges as will be discussed in more

detail in the next chapter. Barret et al. however insist on the fact that these causality con-

ditions are very likely not sufficient and the issue of causality in “Parallelisable Implicit

Evolution Scheme for Regge Calculus” clearly requires much more investigation. Indeed

they express the fact that they are not sure whether the restrictions imposed on the edges

will satisfy the Courant condition. A deep investigation into the issue of causality indeed

formed a major part of this thesis as will be explained in detail over the next few chapters.

2.6 Previous Applications of the Parallelisable Im-

plicit Evolution Scheme for Regge Calculus

The Parallelisable Implicit Evolution Scheme for Regge Calculus has been employed

to examine the evolution of the spatially closed Friedmann-Lamâıtre-Robertson-Walker

(FLRW) universe [Barrett et al. 1997, De Felice & Fabri 2000]. As will be described in

more detail, it did not however produce the expected results. We believe the reason

this algorithm has not been successful is that it does not account for causality properly.

Over the next few chapters, we will show how to include causality into PIES. The revised

algorithm will be illustrated by a numerical example and will be shown to resolve a major

barrier faced by Barrett et al.
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Inclusion of Causality in the PIES

3.1 Introduction

In his seminal paper, Regge derives an analogue to Einstein’s equation valid for a Rie-

mannian manifold from the following action:

IR =
∑

k

Akεk (3.1)

Regge’s original equation however, is not very useful when it comes to General Relativity

(GR) as GR is concerned with pseudo-Riemannian manifolds. The common belief among

the practitioners of Regge Calculus has been that the Lorentzian signature can be incor-

porated in Regge’s equation by tagging time-like quantities with an“imaginary” i =
√
−1.

Inclusion of Lorentzian signature however, is not as trivial as commonly thought. Taking

the derivative of square roots of negative edges in such cases may result in change of sign

as the following simple example shows [Miller 1995]:

i =
√
−1 =

√
1

−1
=

1√
−1

=
1

i
= −i (3.2)

Such errors might become crucial, especially when one considers a (3+1)-evolutionary

scheme in the context of Regge Calculus. It was mentioned earlier that the Sorkin trian-

gulation is believed to be the most successful (3+1)-evolutionary method for skeletonised

27
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manifolds currently at hand. The Lorentzian signature has been included in this method

using the above-mentioned approach of tagging time-like edges with imaginary i′s. In

this chapter, we re-derive the relevant Regge equations as used in PIES, for a Lorentzian

manifold, from scratch. The equations obtained in this section prevent errors such as

the one in equation (3.2). Another crucial issue that has not been properly addressed in

the relevant literature is the inclusion of Causality into PIES. In this chapter, we explain

how causality can be incorporated into Sorkin’s evolutionary method.

In this chapter, we revise the relevant Regge equations, as used in PIES, so that they

include causality. We do this for both a time-like and a space-like bone. One important

quantity that is used in our analysis in this chapter, is the area of a triangular bone

in a pseudo-Riemannian 4-dimensional skeletonised space-time. It is computationally

important to find a single formula (that can easily be used in a computer code) from

which the area of any type of triangular bone is given in terms of its edge lengths. To

prevent the interruption of the main discussion of this chapter, the derivation of the area

formulae and other related materials are presented as an appendix.

3.2 Area of a Bone and the Issue of Causality

In their seminal paper on PIES, Barrett et al. argue that since in this approach one tries

to obtain the information about the newly introduced edges from the knowledge of the

triangulation of the initial spatial hypersurface, the tent-like structure formed above a

chosen vertex on a spatial hypersurface must reside within the future domain of depen-

dence of this hypersurface. Thus, as shown in figure (3.1), the diagonal edges must be

space-like while the vertical edge can in principle be time-like, null or space-like. The

restriction as imposed by Barrett et al. is more a “No Collision” requirement than a

causality requirement. What this condition does is that by making the diagonal edges
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B CA

A’

Figure 3.1: An illustration of PIES in a (1+1) skeletonised space-time. The dashed

line segments represent the null cones of vertices B and C. Barrett et al. require that

the diagonal edges such as BA′ be space-like while the evolutionary paths of vertices,

such as AA′ can be time-like, space-like or null. This condition only prevents the time-

like evolutionary paths of vertices not to collide. This condition is a “No Collision”

condition which results in a piece-wise linear congruence of non-intersecting paths of

evolving vertices.

space-like, it prevents the time-like paths of evolving vertices from colliding in the future.

In that sense, it prevents future singularities to occur.

To include causality without violating the above-mentioned condition, one has to

look at the past null cone of the evolved counterpart of a vertex. Figure (3.2) shows

the situation in a (1+1)-dimensional space-time. It is quite clear that not the entire

1-dimensional piece-wise linear space is within the past null cone of vertex A′.

It is best to discuss causality in a (3+1)-dimensional skeletonised space-time. Consider

triangle 4CAB in figure (3.3); suppose that CA is a space-like edge on a triangulated

3-dimensional spatial hypersurface. Following the PIES algorithm, assume vertex B is

the evolved version of vertex C. Edge BC is time-like but edges AB and CA are space-

like as prescribed by the algorithm. CA resides on the initial hypersurface while BC and

AB go between the two hypersurfaces. The length of edge BC can be chosen arbitrarily

corresponding to the freedom in the choice of lapse. This edge-length will later be used
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B CA

A’

Figure 3.2: Only the information within the past null cone of A′ could have affected it.

The null cones of A′, B and C are represented with dashed lines.

to derive the length of unknown diagonal edges, using Regge Equations. The null cone of

vertex B intersects CA at point P . This null cone divides the time-like bone4CAB, into

a triangle with two space-like and one null edge (NSS) and a triangle with one time-like,

one space-like and one null edge (NST). Clearly, only the (NST) part of the bone is in

the past domain of dependence of vertex B and could have had any influence on B. Thus

to account for causality, we have to include this fact in the action.

To include causality in PIES, instead of the entire area of the bone in Regge action,

given by equation (3.1), only the part of area which is within the past null cone of vertex

B must be included in the action. In particular, in writing the relevant Regge equations

obtained by varying the area of a bone with respect to CB, one has to carry out this

variation for the area of the (NST) triangle, 4CBP .

We now carry out this variation for a time-like bone as well as a space-like bone. In

what follows, we will be using the results obtained in appendix (B).
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Figure 3.3: Triangle 4CBA is a SST triangle and is broken into a NSS triangle, 4PAB,

and a NST triangle, 4CBP , via the null cone of vertex B, here drawn with dashed lines.
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Figure 3.4: Triangle 4CBA is a SSS triangle and is broken into two NSS triangles,

4PAB and 4CBQ, and a NNS triangle, 4BPQ via the null cone of vertex B, here

drawn with dashed lines.
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Figure 3.5: The time-like bone 4CAB is divided into a NST and a NSS triangle by the

null line passing through B.

3.2.1 Variation of a Time-Like Bone with respect to a Time-

Like edge

Consider the time-like bone 4CAB in figure (3.5). In this triangle we have:

A4CBP = A4CAB − A4APB

Where A4CBP represents the area of triangle 4CBP and so on. From (B.18), one can

write:

A4CBP = A4CAB −
A4CAB

2b2
(a2 + b2 + c2) +

4A2
4CAB

2b2

where a, b and c are the edges lengths of triangle 4CAB, as shown in figure (3.5).

Varying the area of 4CBP with respect to a, the time-like edge of 4CAB, one has:

∂A4CBP

∂a
=

∂A4CAB

∂a
(1− a2 + b2 + c2

2b2
+

4A4CAB

b2
)− a

b2
A4CAB (3.3)

but as shown in appendix (B)

∂A4CAB

∂a
=

1

2
a

(b2 + a2 + c2)

4A4CAB

=
1

2
a coth ξ
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Inserting this in equation (3.3) results in:

∂A4CBP

∂a
=

1

2
a (coth ξ)(1− c

b
cosh ξ +

2c

b
sinh ξ)− a

b2
A4CAB

where we have used

4A4CAB/b2 = (2c/b) sinh ξ and (c/b) cosh ξ = (b2 + a2 + c2)/2b2.

One can simplify this equation by replacing A4CAB with 1
2
b c sinh ξ to obtain:

∂A4CBP

∂a
=

1

2
a (coth ξ − c

b
e−2ξcsch ξ) (3.4)

Finally, generalising equation (3.4) for all the bones hanging at edge a, one obtains the

relevant Regge equation that must be used in a “causal PIES”:∑
n

1

2
a
[
coth ξn −

cn

bn

e−2ξncsch ξn

]
εn = 0 (3.5)

where the sum is over all the bones meeting at the time-like edge “a” and ξn is the angle

opposite to“a” in the nth bone hanging at edge“a”. εn stands for the deficiency associated

with bone n.

3.2.2 Variation of a Space-Like Bone with respect to a Space-

Like edge

We now examine the Regge equations associated with a space-like bone. In figure (3.6),

the area of the space-like bone, 4CAB, can be written as:

A4CAB = A4APB + A4PBQ + A4BQC (3.6)

and thus:

∂A4PBQ

∂c
=

∂A4CAB

∂c
− ∂A4ABP

∂c
− ∂A4BCQ

∂c

4ABP and 4BCQ are both (NSS) triangles and their areas, as shown in appendix

(B.0.3) are given by:

A4ABP =
i

4
(c2 − |AP |2) and A4BCQ =

i

4
(a2 − |CQ|2)
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Figure 3.6: In space-like bone 4CAB, drawing the null cone of B produces three trian-

gles. The angle between CA and the x-axis is β while the angle between CB and x-axis

is α.

where i =
√
−1.

∂AABP

∂c
=

ic

2
(3.7)

∂ABCQ

∂c
= 0 (3.8)

On the other hand, from appendix (B.0.1), the area of 4CAB is given by:

A2
4CAB = − 1

16
(a4 + b4 + c4 − 2a2b2 − 2a2c2 − 2b2c2)

whence:

∂A4CAB

∂c
=

c

8A4CAB

(a2 + b2 − c2) (3.9)

Using (3.7), (3.8) and (3.9) in (3.6) yields:

∂A4BPQ

∂c
=

c

8A4CAB

(a2 + b2 − c2)− ic

2
(3.10)

In triangle 4CAB,  CA = b (sinh β t̂ + cosh β x̂)

CB = a (sinh α t̂ + cosh α x̂)
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CA · CB = ab cosh η (3.11)

thus:

cosh η =
a2 + b2 − c2

2ab

In addition, equation (B.1) reads:

sinh2 η =
−4A2

4CAB

a2b2

Consequently,

coth η =
i(a2 + b2 − c2)

4A4CAB

It is important to note that coth η is a real quantity and the imaginary ι appearing in the

numerator of the above equation cancels with the imaginary ι that is built in the area of

triangle 4CAB. Using this result in (3.10) yields:

∂A4BPQ

∂c
= −ic

2
(coth η + 1)

The Regge equation corresponding to a (SSS) edge is then given by:∑
n

∂An

∂c
ε′n = −i c

2

∑
n

(coth ηn + 1) ε′n = 0 (3.12)

where ηn is the angle opposite to edge c in triangle n hanging at this edge and ε′n is the

imaginary deficit angle corresponding to this bone. It is important to observe that the

first term in (3.12) cannot by itself be zero. This means that in an empty curved skele-

tonised space-time, a space-like edge has both space-like and time-like bones hanging at it.

3.3 Conclusion

In this chapter, we showed how to account for causality in a (3+1)-evolutionary scheme

for skeletonised space-times, first introduced by Barrett et al [Barrett et al. 1997]. Both

the time-like and space-like types of bones, as classified by Regge, were considered exten-

sively and a new convention concerning the areas of triangles with at least one null side
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was set. The Regge equations corresponding to variation of a time-like bone with respect

to a time-like edge and the variation of a space-like bone with respect to a space-like

edges were obtained. An important observation was made regarding space-like edges.

It was shown that in a skeletonised analogue of a curved space-time a space-like edge

cannot have only space-like bones hanging at it and a combination of both space-like and

time-like edges must hang at this bone.



Chapter 4

A Skeletonised Model of the FLRW

Universe

4.1 Introduction

If a numerical method is to produce reasonable solutions to Einstein’s equation, it must

be able to reproduce the known analytical solutions, fairly well. The spatially closed

Friedmann-Lemâıtre-Robertson-Walker (FLRW) Universe is among the most famous so-

lutions to Einstein’s equation that is obtained analytically. In this chapter, we show that

a skeletonised FLRW universe, using the revised PIES algorithm, evolves in a fairly close

manner to the corresponding analytical solution. More importantly, we show that the

inclusion of causality resolves the problem of “Stop Point” as observed by previous prac-

titioners of Regge Calculus. In section (4.2) of this chapter we briefly review the FLRW

solution. We describe the general characteristics of two of the standard triangulations

of a 3-sphere in section (4.3). Before approximating the spatially closed FLRW solution

using the revised Regge equations, we will discuss the notion of time in the context of

Sorkin triangulation and describe a difficulty associated with this notion in section (4.4).

We propose an approach towards resolving the ambiguities associated with the notion

37
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of time in Regge Calculus. Section (4.5) describes the initial value problem as well as

the evolution problem of FLRW universe in the context of the PIES. Finally, in section

(4.7), we will compare the exact spatially closed FLRW model with the same solution

as obtained using Sorkin Triangulation. Section (4.8) wraps up this chapter with some

concluding remarks. In this chapter, the gravitational constant, G, as well as the speed

of light, c, is taken to be equal to one: c = G = 1. The cosmological constant, Λ, is set

to zero.

4.2 The Friedmann-Lemâıtre-Robertson-Walker Uni-

verse

It is believed that the universe, on its largest scales, at a given moment of time, is spa-

tially homogeneous and isotropic. Homogeneity refers to the fact that the universe looks

the same from every point and isotropy implies that the universe, at a given point, looks

the same in every direction. Indeed this belief, that goes by the name of “Cosmological

Principle”, is a revised version of the “Copernican Principle”. The “Copernican Principle”

insists that the space-time is homogeneous and isotropic, a more precise statement of

the fact that we do not occupy any specific position in the Universe. The “Cosmological

Principle” is the foundation of the standard model of cosmology. The fact that the de-

viations from regularity of the Cosmic Micro-Wave Background are on the order of 10−5

or smaller is perceived by many to be a strong support for the isotropy of the universe.

Put into more rigourous form, isotropy states that for any two vectors, ~u and ~v, in the

tangent space of a point P of a manifold M, there exists an isometry of the manifold that

takes ~u to ~v. Homogeneity states that for any two points in such a manifold, there always

exists an isometry that takes one point to the other; in other words, the metric of the

manifold is the same everywhere. If the spatial hypersurfaces of a space-time, at a given
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instant, are both isotropic and homogeneous then these spatial hypersurfaces are called

“maximally symmetric”. Schur’s lemma [Kobayashi & Nomizu 1963] states that these

maximally symmteric spatial slices have uniform curvature. The Weyl tensor associated

with the 3-metric of these spatial slices always vanishes and it is possible to show that

the Riemann tensor can be written as:

Rabcd =
R

k(k − 1)
(γac γbd − γad γbc) (4.1)

where k is the dimension of the hypersurfaces (which is of course three for a 4-dimensional

space-time), R is the Ricci scalar associated with these hypersurfaces and γij represents

the 3-metric [Carroll 2004].

It is possible to show that the most general form of a metric for a space-time with

maximally symmetric spatial slices is the Robertson-Walker (RW) metric given by:

ds2 = −dt2 + a2(t)
( dr2

1− kr2
+ r2(dθ2 + sin2 θ dφ2)

)
(4.2)

where a(t) is known as the “Scale Factor” and roughly describes how big the slices of

the universe are at a given moment of time. k is a constant representing the curvature.

Assuming the topology is trivial, the spatial slices are 3-spheres if k = 1, flat if k = 0

and hyperbolic if k = −1. A more economical representation of the RW metric can be

obtained using the following change of variable:

dχ2 =
dr2

1− kr2
(4.3)

This results in a more compact and useful form of the RW metric given by:

ds2 = −dt2 + a2(t)
(
dχ2 + f 2(χ)(dθ2 + sin2 θdφ2)

)
(4.4)

In equation (4.4), f(χ) is a function that can take on one of the following three forms:

f(χ) =


sin χ k = 1

χ k = 0

sinh χ k = −1
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The time coordinate used in the RW metric is known as the “Cosmological Time”

and is measured by the so-called comoving observers. These are observers who stay at

a fixed coordinate (r, θ, φ). The lapse of their proper time is taken to be equal to the

lapse of comoving time. Incidentally, the only observers that perceive the universe as

being isotropic are these comoving observers. It is important to further clarify what one

means by the expression “Cosmological Time”. The notion of a cosmological time or

universal time is not unambiguously defined in General Relativity. The so-called “Weyl’s

Postulate” however provides us with a means of defining a notion of universal time:

Suppose the worldlines of galaxies form a bundle or more precisely a congru-

ence of timelike geodesics that are non-intersecting except for a singularity

possibly in the past or in the future or both. Then these worldlines are diverg-

ing from a singularity in the past and possibly converging to one in the future.

Each of these geodesics passes through one regular point. Then we assume

that there exists a set of orthogonal spacelike hypersurfaces to these geodesics.

We could parametrise these hypersurfaces with a parameter t which without

loss of generality could be chosen to be the proper time along the geodesics

[Islam 1992].

The evolution of a universe, endowed with the RW metric, is determined through

Einstein’s equation,

Gµν = 8π T µν (4.5)

It is customary to take the energy-momentum source to be a perfect fluid represented

by:

T µν = (ρ + P )uµuν + Pgµν (4.6)

where ~u is the four velocity of the particles of the perfect fluid, ρ is the energy-momentum

density and P stands for pressure. Inserting the RW metric into Einstein’s equation along

with the perfect fluid as the energy momentum source yields the famous Friedmann
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equations given by: (
ȧ

a

)2

=
8π

3
ρ− k

a2
(4.7)

ä

a
= −4π

3
(ρ + 3P ) (4.8)

In this chapter, we concentrate on the spatially closed FLRW universes with spatial slices

having trivial topology and of course the geometry of a three sphere. From this point

on, we set k = 1 in equation (4.2). These universes are also known as spherical FLRW

universes and we will be using this term throughout the rest of this chapter. Setting

the pressure, P , equal to zero in the perfect fluid expression gives the equation for dust.

The solution to Friedmann equation for a spherical FLRW universe filled with dust is a

cycloid given by the following parametric equations:
a = 1

2
amax(1− cos η)

τ = 1
2
amax(η − sin η)

(4.9)

2 4 6 8 10 12
Time

1

2

3

4

Scale Factor HaL

Figure 4.1: The Evolution of a Spherical FLRW Universe with total mass M=10. The

maximum value attained by the scale factor is amax = 4.24413 and this occurs at τ =

6.667.

Such a universe starts out at a singularity, expands, reaches a maximum size at

amax and then starts contracting to collapse to a singularity as shown in figure (4.1).
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The maximum value of the scale factor is very closely related to the total mass of this

universe and is given by:

amax =
4M

3π
(4.10)

It is important to note that the notion of the total mass-energy of a spherically closed

FLRW universe has no well-defined meaning. The reason is that there exists no platform

outside the universe where an observer can stand and measure the attraction of this

mass via Keplerian orbits [Misner, Thorne & Wheeler (1972)]. The only reason that the

symbol M is interpreted as the total mass of the universe is that during the evolution of

a matter dominated universe, the product of “mass-energy density” and volume remains

a constant. This constant is represented by symbol M:

ρ · 2π2a3 = M

and it is the value of this constant that is referred to as the total mass of the universe

[Misner, Thorne & Wheeler (1972)].

4.3 Standard Triangulations of a 3-sphere

It is clear that the very first step in implementing PIES is the introduction of an ap-

propriate lattice. As we intend to use a (3+1)-evolutionary method based on Regge

Calculus, we seek a skeletonisation of a 3-dimensional hypersurface. In the particular

case under consideration, the spatial hypersurfaces are 3-spheres. Here, we examine the

evolution of the FLRW using two of the standard triangulations of a 3-sphere: the 5-cell

and the 16-cell models. One important property of these standard models is that the

number of tetrahedrons meeting at each edge of these lattices is the same. This indeed

corresponds to the isotropy requirement of the FLRW universe. In what follows, we first

give a detailed description of these two standard triangulations of 3-sphere and then will

use these two lattices to examine the evolution of a skeletonised FLRW universe.
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4.3.1 5-Cell Triangulation of S3

A 5-cell or Pentatope, represented in figure (4.2), also known as α4, is the 4-dimensional

counterpart of a planar triangle and a solid tetrahedron. It has 5 tetrahedral cells, 10

12

3 5

4

Figure 4.2: A 5-Cell or Pentatope

faces, 10 edges and 5 vertices. The Schläfli symbol 1 for this polychoron is {3, 3, 3}.

Three tetrahedral cells meet at every edge and from each vertex, there emanates four

edges. The easiest way to think about this 4-simplex is to imagine that one tetrahedron

sits in the middle and on each face of this central tetrahedron one of the four remaining

tetrahedra is assembled such that none of the faces of the central tetrahedron is exposed.

The apexes of the four external tetrahedra are then identified as a single point in the 4th

dimension. The 3-surface of the pentatope is topologically equivalent to a 3-sphere and

this hypersurface is considered as the simplest triangulation of a 3-sphere, just as the

surface of a solid tetrahedron is a triangulation of a 2-sphere. Similarly, the perimeter

of a triangle can be perceived as a piece-wise linear model of a circle. This particular

triangulation can be used along with PIES to model a S3 ×R space-time.

1The Schläfli symbol of a regular polychoron is given by {p, q, r}, where {p} represents the type of
polygonal face, {p, q} represents the type of cells and r represents the number of cells meeting at an
edge.
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4.3.2 16-Cell Triangulation of S3

The 16-cell or Hexadecachoron is another regular convex polychoron whose hypersurface

is considered a standard triangulation for a 3-sphere. It is also known as β4 in the

literature. This 4-dimensional dipyramid is bounded by 16 tetrahedral cells and has 32

triangular faces, 24 edges, and 8 vertices. The Schläfli symbol of the 16-cell model is

given by {3, 3, 4}. At each vertex, 8 tetrahedra, 12 triangles and 6 edges meet. At every

edge, 4 tetrahedra and 4 triangles meet [Coxeter 1973]. In addition to the Pentatope,

we will use the surface of this polychoron as the underlying lattice to approximate the

spatial hypersurfaces of the FLRW universe.

2

3

2*

3*

4*

1

4

1*

Figure 4.3: A 16-Cell or Hexadecachoron

4.4 The Time-Function in the Parallelisable Implicit

Evolutionary Method

One of the most important pieces of required information in solving any second order

differential equation is the initial conditions. For a second order differential equation,

one requires two pieces of initial conditions, the value of the sought-after function at a

given point and its rate of change at that point. Switching to the language of Newtonian
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Mechanics, to solve a second order differential equation, one requires both the position

and the velocity of an object at a given time.

The Sorkin triangulation method does not introduce the initial data in a time evo-

lution problem comprehensively. In fact, the algorithm is such that it only uses the

information on a 3-dimensional hypersurface, not a 4-dimensional thick slice of space-

time(sandwiched between two consecutive hypersurfaces), to produce the next 3-dimensional

hypersurface [Tuckey 1993]. The recipe does not tell one how fast the initial slice has

evolved to the newly obtained slice. To compare the at-hand situation with the procedure

of solving a second order differential equation, in Sorkin triangulation method, one has

the value of a function at a given point but not its rate of change at that point.

It is well known that the notion of measured proper time, in prism evolutionary meth-

ods, is ambiguous. In particular, depending on where an observer is located in a lattice,

different times are measured. Some possible cases have been initially explored in the

literature [Collins & Williams 1973]. To obtain their choice of time function, Collins and

Williams embedded their pentatope universe in a 4-dimensional Euclidean space. More

specifically, for the pentatope model in their evolutionary scheme, Collins and Williams

explored three possible time functions: elapsed time for a test particle located at the

centre of a tetrahedron, elapsed time for a test particle located at a tetrahedron vertex

and finally the elapsed time for a test particle that at the moment of time-symmetry

lies on the intersection of the 3-sphere of the analytical solution and the corresponding

pentatope of the lattice universe. The first choice gives the smallest elapsed time and

the second choice gives the largest elapsed time. According to Collins and Williams, any

other choice of time function, including the third choice, gives an elapsed time larger

than the first choice and smaller than the second choice. The critical issue of elapsed

time in a lattice universe was not much explored in the few papers that were written on
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skeletonised FLRW universes after that of Collins and Williams. All other works used

either the first choice or the second choice of time as presented by Collins and Williams,

depending on which one produced a better fit, and did not elaborate on the crucial issue

of time.

B

A

C

Figure 4.4: An arc segment is approximated using two line segments

Indeed none of the above-mentioned time functions can be taken to represent a global

time as defined in the case of the analytical solution using the Weyl postulate. Each of

the time functions as defined by Collins and Williams are only the time of a particular

observer which is by no means a preferred observer. To gain a better understanding of

the problem facing us, let us consider the evolution of a 1-dimensional surface. Suppose

the curve shown in figure (4.4) is approximated by the two line segments BA and AC

and all the information pertaining to this discretisation is at hand. We aim to evolve this

structure according to the Sorkin triangulation algorithm. We choose to evolve vertex

A first. In principle, according to the algorithm, we can move along any straight line

segment, emanating from vertex A, within the future null cone of this vertex. As was

discussed earlier, one is free to choose the length of this vertical edge connecting vertex A

to its evolved counter-part, say A′. It is well known that, in the continuum, the length of

a time-like geodesic represents the time elapsed on the clock of the observer moving along

that geodesics. The situation is not much different here as it is clear that the physics

of a skeletonised space-time in Regge Calculus is very similar to Special Relativity. Any

line segment within the null cone of vertex A, emanating from A, is indeed a piece of

a geodesic and its norm represents the elapsed time for an observer moving along this
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line segment. In the particular example shown in figure (4.5), one can choose to advance

vertex A along any of the paths g1, g2, g3 or g4. The elapsed time of all such observers

are related via Lorentz transformations. In principle, one of these observers measures a

time that is either identical or closely related to the lapse of time of a comoving observer,

however, it is not possible to identify this observer among the infinite number of observers

whose paths are geodesics, starting at vertex A. Since there is not a unique comoving

observer at each vertex, but a class of such observers, there is no unique comoving time,

but a whole class of choices of comoving time.

B

C

A

g
1

g
2

g
3

g
4 Null Cone of A

Figure 4.5: One may choose to advance vertex A along any of the geodesics g1, g2, g3 and

g4. Each of these geodesics is the path of a certain observer and each of them measure

his own proper time.

One is not even able to define a comoving observer in a manner similar to the Weyl

postulate, by using orthogonality of the observer’s path to the spatial hypersurface. First

of all, the notion of an orthogonal vector at a cone singularity is not well defined. Sup-

pose now that one tries to come up with a definition of an orthogonal vector at a vertex.

It is not possible to generalise such a definition to all vertices so to obtain a notion of

comoving time. To perceive this, suppose one seeks an orthogonal vector, at vertex A, in

the example shown in figure (4.5). One may take the vector average of the two vectors

~V , orthogonal to BA, and ~W , orthogonal to AC at vertex A and defines this average

to be the orthogonal vector at vertex A as shown in figure (4.6). This however is only
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a local solution and does not necessarily result in the same elapsed time for all vertices.

In particular, there is no guarantee that using the same definition of normals at all the

vertices results in equal lapse of time at all the vertices. It is of course well known that

B

C

A

Null Cone of A

V

W

V’ W’

Figure 4.6: Vector ~V is orthogonal to edge BA and vector ~W is orthogonal to edge AC.

One may define a normal at vertex A by taking a weighted average of them and measure

the lapse of time using this normal. There is however no guarantee that this “Local”

solution results into the same lapse of time for every vertex.

one property of comoving observers is that their lapse of proper time is equal and thus

this approach does not provide one with a general solution.

A precise analysis of the analytical solution showed that indeed the correct elapsed

time must be equal to the 4-volume of the 4-dimensional structure formed in between

two 3-dimensional spatial slices divided by the 3-volume of the base. Indeed the resulting

expression plays the role of the altitude of this structure. The particular nature of the

Sorkin triangulation algorithm however, makes it extremely hard to even recognise the

form of this structure. This 4-dimensional object can take on many forms, depending on

how one chooses to start the evolution and how the choices of lapse and shift, for each

vertex, differs from that of other vertices. An extensive search of current literature did

not even reveal a formula through which one can calculate the 4-volume of a structure

with two pentatopes of different sizes at the two ends (this object is indeed the higher

dimensional replica of a trapezium and a truncated pyramid. The objects formed in the

process of Sorkin evolution of course have much more complicated shapes).
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Consequently, we commenced a search for possible measures of time for the evolution

of the FLRW universe using Sorkin Triangulation. Our quest has shown that there exists

a family of different time-functions with an undetermined constant coefficient. It must

be emphasised that the time-functions obtained, as discussed below, do not represent the

proper time or the comoving time. They all however, can be taken to be related to the

lapse of time correctly.

The first hint for the correct form of the time-function came from an approach towards

quantum gravity known as the“Sum-over-Histories Framework for Gravity”[Sorkin 1994].

It is well known that in this approach the 4-volume can be taken as a measure of time.

As was mentioned, it is very difficult to calculate the total volume of a 4-dimensional

slice generated using Sorkin algorithm. We however chose the 4-volume of a 4-simplex,

that forms upon evolving a certain vertex, as a measure of time. Such a 4-simplex has

its base on the old hypersurface and two of its vertices are the particular vertex under

consideration and its evolved counter-part and thus always has one time-like edge and

nine space-like edges. This volume, represented by δV4, when scaled by the edge length

of the hypersurface that is being evolved (up to an undetermined constant), can be taken

as a measure of time as it embraces many features of the initial hypersurface as well as

the particular edges used in the course of evolution.

Another appropriate choice of time-function can be taken to be the difference between

the 3-volumes of two consecutive spatial 3-dimensional surfaces, scaled by the edge length

of the hypersurface. Again, up to an undetermined constant coefficient, the fit produced

using this time-function is in good agreement with the analytical solution. Calling the

difference between the 3-volumes of two consecutive hypersurfaces δV3, we have:

δV3 = 2π2(a3
1 − a3

2)
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so that

t ∝ 2π2

a1

(a3
1 − a3

2)

where a is the effective radius associated with the lattice edge lengths of the two consec-

utive spatial hypersurfaces.

Finally, another measure of the elapsed time could be obtained using a combina-

tion of the above-mentioned time-functions. The reason is that the first of these two

time-functions certainly has a component in the temporal direction and the second one

measures the spatial change of volume and thus combining them in the form of

t ∝ (
1

a2
)(δV3)

α(δV4)
(1−α)

certainly produces another measure of time. Here α is an unknown constant power. In

section (4.7), we will present the evolution of the 5-Cell and 16-Cell models using the

first two choices of time-fucntions as presented above.

4.5 Construction of the Skeletonised FLRW Universe

In this chapter, we show the evolution of the 5-cell and the 16-cell model as obtained

through the revised Regge equations for the PIES when plotted against the time func-

tions described in the previous section. The details of the calculations are given over the

next two sections. All the previous attempts to evolve a skeletonised spatially closed

FLRW universe, using Prism Methods or PIES, have failed. Most notably, Brewin

and Barrett et al., studied the evolution of the spatially closed skeletonised FLRW uni-

verse extensively, using Regge equations, as introduced by Regge in his seminal paper

[Brewin 1987, Barrett et al. 1997].

Their results showed that the evolution of simplicial analogues to spatially closed

FLRW universes stops well before such universes collapse to zero spatial volume. This



Chapter 4. A Skeletonised Model of the FLRW Universe 51

Figure 4.7: The Evolution of the spherical FLRW Universe using the 600-cell triangula-

tion of 3-sphere as obtained by Barrett et al. The evolution stops well before reaching

zero spatial volume [Barrett et al. 1997].

problem is usually called the “Stop Point” problem. In particular, Barrett et al. noticed

that the point of stop is independent of the length of time-like intervals between two

consecutive spatial hyper-surfaces.

Independent of the choice of time function, there is an important characteristic that

distinguishes our approximations from the ones performed before. The evolution of our

solution does not stop at a certain volume and the universe collapses to zero spatial vol-

ume. This is a strong indication that the inclusion of causality, as was discussed in

chapter (3), removes the obstacle faced by those who used the original form of Regge

equation to reconstruct the FLRW universe.

To see how well the revised Regge equations in the Sorkin triangulation approximate

the analytical spherical FLRW solution, we take the surfaces of the 5-cell and 16-cell tri-

angulations to represent the skeletonised counter-parts of the 3-sphere. In addition, we

take the usual perfect fluid assumption of FLRW universe to be represented by particles

of dust. On each vertex of each of the above lattices, we assemble a particle of dust and

we take these dust particles to have identical masses.



Chapter 4. A Skeletonised Model of the FLRW Universe 52

The code used in the reconstruction of the spherical FLRW universe was developed in

Mathematica. The flowchart as well as the code, corresponding to one step of evolution,

are included in appendices (D) and (E). The details of obtaining the required parameters

used in the code is given over the next few sections.

4.5.1 Construction of the Initial Hypersurface at the Moment

of Time-Symmtry

The first step in comparing the skeletonised spherical FLRW universe with the analytical

solution is the construction of the triangulated hypersurface at the moment of“Time Sym-

metry”. A 4-geometry is said to be time-symmetric if there exists a space-like hypersurface

at all points of which the extrinsic curvature vanishes [Misner, Thorne & Wheeler (1972)].

Before solving the initial value problem, it is necessary to define the notion of “Effective

Radius”: the “Effective Radius” of the skeletonised universe, denoted by ae, is found by

equating the total volume of a spatial hypersurface of the lattice universe with that of a

3-sphere:

2π2a3 = k
l3

6
√

2
(4.11)

where k is the number of tetrahedral cells.

The next step is to solve the initial value problem at the instant of time-symmetry.

It is well known that the initial value problem, for a space-time with an instant of time-

symmetry, reduces to [Misner, Thorne & Wheeler (1972)]:

(3)R = 16π (energy-density) (4.12)

where (3)R stands for the 3-dimensional (spatial) Ricci tensor. When written in the

context of skeletonised space-times, equation (4.12) has the following appearance
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[De Felice & Fabri 2000]: ∑
j

εij lij = 16π
Me

n
(4.13)

where n is the number of vertices of the underlying simplicial complex. The sum is over

all the vertices j, joined to vertex i by an edge of length lij. εij is the defect over each

edge lij (It is important to note that here, we are looking at a 3-dimensional lattice and

thus the defects are concentrated on edges). In any of the standard triangulations of a

3-sphere with Schläfli symbol {p, q, r}, the number of tetrahedral cells meeting at an edge

is equal to r. The dihedral angle between any two faces of an equilateral tetrahedron

is equal to arccos(1/3) or approximately 71◦. Thus the defect on each edge of a given

standard triangulation is:

ε = 2π − r arccos(1/3)

In addition, each vertex is connected to C other vertices (where C = 4 for the 5-cell

model and C = 6 for the 16-cell) and thus equation (4.13), becomes:

C lmax (2π − r arccos(1/3)) = 16π
Me

n
(4.14)

In this equation, lmax is the edge length of the skeletonised universe at the moment

of time symmetry. This maximum edge length can be obtained using equation (4.11) in

reverse by setting a = amax, where amax is the scale factor of the analytical solution at

the moment of time symmetry. Next by using equation (4.14), one can find the “Effective

Mass”, Me, that must be put in the skeletonised universe so that its volume at the moment

of time-symmetry is equal to that of the analytical solution.

4.5.2 Evolution of the Initial Hypersurface

With these pieces of initial data at hand, we will now set out to evolve the skeletonised

FLRW universe using the revised Regge equation in Sorkin triangualtion. As was men-

tioned in chapter (2), the fact that the Bianchi identities have a counter-part in Regge

Calculus allows us to choose the length of four of the unknown edges arbitrarily. The
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length of the remaining edges can be found using corresponding revised Regge equations.

In this section however, we undertake a slightly different approach from what was

just described to examine the evolution of the skeletonised FLRW universes. As we

intend to test whether the revised PIES algorithm solves the problem of “Stop Point”,

we make similar assumptions to those made by Barrett et al.[Barrett et al. 1997]. For

more discussion on the assumptions, the reader is referred to the paper by Barrett et al.

[Barrett et al. 1997]. Following Barrett et al., we assume that there exist homogenous

and isotropic solutions to the relevant Regge equations for the lattice universes under

consideration. This is indeed equivalent to the assumptions that (i) all diagonal edges

at each step are equal, (ii) all the “vertical” time-like edges going between any two

consecutive hypersurfaces are equal and finally, (iii) all the edge lengths of a given spatial

hypersurface are equal. The assumption about the vertical time-like edges can be seen as

a choice of lapse. The assumptions about the diagonal edges as well as the spatial edges

however, certainly involve assumptions about the dynamics of the system and are more

than a choice of shift.

12

3 5
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6

Figure 4.8: First Step in the Evolu-

tion of a Pentatope Universe. Ver-

tex [1] evolves to vertex [6].

12
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4

67

Figure 4.9: Second Step in the

Evolution of a Pentatope Universe.

Vertex [2] evolves to vertex [7].

Using the above-mentioned assumption of the existence of homogeneous and isotropic
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solutions, the evolutions of the 5-cell and the 16-cell universes run very similarly. Thus,

we choose to describe the evolution of the pentatope universe in detail and we dispense

with details of the 16-cell model calculation. The evolution of the lattice universe consists

of two major steps:

In the first step according to the algorithm, we choose a vertex, say vertex [1] in

the pentatope universe as shown in figure (4.8), and introduce a new vertex above it;

call it [6]. Vertex [6] is then to be connected to [1] by a time-like edge of norm, say

ν. This is known as the vertical edge, although it does not have to be orthogonal to

the hypersurface. In addition, the algorithm prescribes that all other vertices that are

directly connected to vertex [1] on the initial hypersurface must be connected to vertex

[6] via space-like edges. The length of these unknown edges will be obtained by solving

the corresponding Regge equations. To evolve the pentatope universe, we assume that

the length of the time-like vertical edge is given. Given the length of the spatial edges on

an initial hypersurface and assuming that all the diagonal edges are equal, we can obtain

the length of the diagonal edges by solving the relevant Regge equations.

Next, we pick another vertex on the initial hypersurface, for instance [2], and in a

procedure identical to that described earlier for evolution of [1] to [6], evolve [2] into

another vertex, say [7]. This step, however, involves an extra task of connecting [6] to

[7]. Again, using the assumption of homogeneity and isotropy of the universe, the new

diagonal edges introduced in the process of evolving [2] to [7] are taken to have the length

of the diagonal edges introduced in the previous step, obtained through Regge equations.

The only remaining unknown, appearing in our revised Regge equation, is [67]. The

length of [67] can now be acquired by solving the corresponding Regge equation. Since

we are assuming that each hypersurface is an equilateral pentatope, finding the length

of [67] indeed is the end of an evolutionary step. One can in principle continue this
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procedure until the spatial volume of the pentatope universe collapses to zero. We will

now describe how the relevant Regge equations, for each step must be obtained.

4.5.3 Lattice Action and the Relevant Regge Equations

The first step in writing the corresponding Regge equations for the lattice universe is to

write the relevant Regge action. As was mentioned earlier, we choose to represent the

usual perfect fluid assumption of the analytical FLRW universe by dust. In particular,

we place one dust particle on each of the vertices of the skeletonised universe at a given

instant of time. Each particle is assumed to have a mass of Me/n where Me is the effective

mass of the lattice universe as was described earlier and n is the number of vertices of

the lattice. The corresponding action for the skeletonised FLRW universe is then given

by (in the units c = G = 1):

I =
1

8π

∑
k

Acausalkεk +
∑

j

M

n
νj (4.15)

where νj is the norm of the time-like edge connecting a vertex to its evolved counter-

part. The term Ak in the above equation represents the “Causal Area Content” of all

those bones with defect εk on them. In utilising PIES for the evolution of the pentatope

universe, two types of bones are distinguishable: (i) time-like bones with two space-like

and a time-like edge, in particular a spatial edge, a diagonal edge and a vertical edge (ii)

space-like bones with two space-like diagonals and one spatial edge. As we proceed, it

will become clear that, for the numerical examples under consideration, we will only be

using the time-like bones.

The total action as given by equation (4.15), in principle, can be varied with respect

to three types of edges: vertical, spatial and diagonal. The particular assumption of the

existence of homogeneous and isotropic solutions however allows us to acquire the desired
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solution using only the set of equations that are obtained by variation of the action with

respect to the vertical time-like edge. In particular, the variation of the action with

respect to a typical vertical edge, νi for instance, results in:

1

8π

∑
k

∂Ak

∂νi

εk =
Me

5
(4.16)

The left-hand side of equation (4.16) is indeed the variation of a time-like bone with

respect to a time-like edge. The corresponding equation for this variation was obtained

in chapter (3) where we showed how causality can be accounted for. In the next section,

we calculate the required parameters for the evolution of the skeletonised universes and

customise equation (4.16) for both the 5-Cell and the 16-Cell models.

4.6 Calculation of the Required Parameters

Once the total mass of a spherical FLRW universe is given, the maximum scale factor

as well as moment of time symmetry can be obtained. Here we choose to reproduce

the evolution of a spherical FLRW universe with total mass of M = 10. The maximum

scale factor for this universe is given by amax = 4M
3π

= 4.24413. The universe attains the

maximum volume at τ = 6.6667.

4.6.1 The 5-Cell Universe

Using equation (4.11), for the pentatope universe to achieve the same maximum 3-volume

as the above analytical model at the moment of time symmetry, we find lmax = 13.6814.

From this value of lmax, using equation (4.14):

4 lmax (2π − 3 arccos(1/3)) = 16π
Me

5
(4.17)

the effective mass for the pentatope universe is equal to Me = 14.1005. Using equation

(3.5) of chapter (3), for a pentatope, we have:

4∑
k=1

1

2
ν (coth ξk −

dk

lk
e−2ξk csch ξk)εk =

8π

5
M (4.18)
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where ξk is the hyperbolic angle facing the vertical edge, with respect to which the vari-

ation is carried out, in the kth triangle hanging at this vertical edge. Since the initial

pentatope is taken to be equilateral, and we are also assuming that each 3-dimensional

hypersurface will keep the shape of an equilateral pentatope throughout the evolution, the

defect on each of the four triangles hanging at the vertical edge is the same. By the same

token, one concludes that all hyperbolic angles, ξk, facing the vertical edge, are also equal.

We now have the required equations to evolve the pentatope universe. In the first

step of evolution, the unknown is the length of the diagonal edges which can be obtained

using equation (4.18). In the second step, the same equation can be used but this time,

the unknown is the triangulation edge length of the evolved hypersurface.

4.6.2 The 16-Cell Universe

Following the steps taken for the 5-Cell model, we can obtain the maximum edge length as

well as the equivalent mass for the 16-Cell universe. Using equation (4.11), the maximum

edge length of the 16-cell model, at the moment of time symmetry, is given by lmax =

9.2843. From this, using equation (4.14):

6 lmax (2π − 4 arccos(1/3)) = 16π
Me

8
(4.19)

the total effective mass for the 16-Cell model turns out to be Me = 12.0517. The relevant

Regge equation for this triangulation of the 3-sphere is given by:

6∑
k=1

1

2
ν (coth ξk −

dk

lk
e−2ξk csch ξk)εk = πM (4.20)

4.7 Discussion of the General Space of Solutions

The general space of solutions is very similar for the 5-Cell and the 16-Cell models and

thus we start with a general discussion of the roots. To visualise the evolutionary steps
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taken, we choose to discuss the example of the pentatope as shown in figures (4.8) and

(4.9). In the first step of evolution, vertex [1] is evolved to vertex [6]. The length of [16]

is taken to be known using our freedom in the choice of lapse. The length of the diagonal

edges that connect vertices [2], [3], [4] and [5] to [6] are unknown. As we seek homo-

geneous and isotropic solutions, we take all these edge lengths to be equal and denote

them by d. Using the Regge equation obtained by varying the action with respect to the

time-like edge, [16], one can obtain the length of space-like diagonal edges, d. This Regge

equation has two roots. One that is smaller than the edge length of the hypersurface

which is being evolved and one that is larger. The smaller root results in a solution

corresponding to a space-time that is contracting and the larger one results in a solution

that expands indefinitely. As we were examining the contraction of the space-time from

the point of time-symmetry on, we were interested in a solution that contracts. Choosing

the smaller root to represent the value of the diagonal edges, we may proceed to the

next step. Evolving vertex [2] to [7] introduces a number of new edges. Again, as the

sought-after solution is required to be homogeneous and isotropic, we take the diagonal

edge lengths to be equal to the value obtained in the previous step. The only unknown

then is edge [67], the evolved counterpart of edge [12]. Once again, by using the Regge

equation obtained by varying the action with respect to the time-like edge, [27], we find

the length of edge [67]. This equation also produces two solutions which are both accept-

able as they are both contracting. This indeed finishes one full step of evolution as by

finding the length of edge [67], we know all the edge lengths of the next spatial foliation

or skeletonised hypersurface which is an equilateral pentatope.

The difference between the two spatial roots, obtained in the second step, is less than

or of the order of 10−2. The graphs of the larger roots for both the 5-cell and the 16-cell

are shown in figures (4.10), (4.11), (4.12) and (4.13). The total number of steps taken

to produce the 5-cell graph is 18800 and for the 16-cell graph is 14135. The last value
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of the scale factor for the 5-cell model in the graphs shown in figures (4.10) and (4.12)

is 2% of the maximum scale factor. For the case of the 16-cell graphs shown in figures

(4.11) and (4.13), the last value of the scale factor is 1.1% of the maximum scale factor.

It is quite evident that independent of the choice of time-function, both the 5-cell and the

16-cell universes evolve towards zero spatial volume. This is indeed the most important

consequence of the inclusion of causality into PIES and the most notable contribution of

this thesis to the field of evolutionary methods in Regge Calculus. The solution associated

with both of the spatial roots however shows a curious feature. As the spatial edge length

gets closer to zero, it takes more and more steps to make progress. This is reminiscent

of collapse towards the singularity of a blackhole. In both cases however, with the use

of a good computer, one can satisfactorily get close to zero. Of course, like any other

numerical method, we expect that this numerical approximation breaks at some point

but the fact that the course of evolution follows the analytical model closely and the

stop point is not at about 1/4 of the maximum spatial volume (as others found) is an

indication that the modified PIES is a remarkable numerical method.

Figure 4.10: The larger root of the

5-Cell model. The time function is

taken to be 1
20a

δV4.

Figure 4.11: The larger root of the

16-Cell model. The time function is

taken to be 1
4a

δV4.



Chapter 4. A Skeletonised Model of the FLRW Universe 61

Figure 4.12: The larger root of the

5-Cell model. The time function is

taken to be 0.022π2

a1
(a3

1 − a3
2).

Figure 4.13: The larger root of the

16-Cell model. The time function is

taken to be 0.022π2

a1
(a3

1 − a3
2).

4.8 Conclusion

The successful reconstruction of the spherical FLRW universe is evidently a confirmation

for the importance of accounting for causality properly in PIES. The inclusion of causality

into Parallelisable Implicit Evolution Scheme has indeed perfected the best evolutionary

scheme currently at hand in the context of Regge Calculus. This method can now be

effectively employed to examine the evolution of manifolds devoid of symmetry or with

non-trivial topology. The issue of elapsed time, however is an aspect that requires further

investigation. The ambiguities associated with the notion of time were discussed earlier

in this chapter. In the particular case considered in this chapter, it was possible to

introduce measures of time and as the analytical solution was known, we were able to

discern the correctness of the results. A definition of a global time in skeletonised space-

times however is essential; otherwise it is impossible to interpret the findings using Regge

calculus properly. This issue is certainly worth of further study.



Chapter 5

Triangle Inequalities in the

Minkowski Plane

5.1 Introduction

Minkowski geometry is sometimes perceived as the twin of Euclidean geometry. The

former is equipped with a metric of semi-definite signature, i.e. (−, +, +..., +) while the

latter’s metric has a positive definite signature, i.e. (+, +, ..., +). It is well known that

the Minkowskian geometry (also known as the Lorentzian geometry), in four dimensions,

is the best mathematical tool to describe the Special Theory of Relativity. Although the

difference between the Minkowskian and Euclidean geometries appears to be minor at

first glance, the simple difference in the metric signature is indeed the underlying cause

of the dramatic differences between these two geometries. The so-called paradoxes of the

Special Theory of Relativity all emanate from the fact that the underlying geometry of

the space-time is Minkowskian rather than the familiar Euclidean geometry.

One of the most prominent characteristics of the plane Euclidean geometry is the

validity of the “Triangle Inequality”, stating that the norm of the sum of two vectors

62
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is smaller or equal to the sum of their norms . Geometrically, this statement implies

that the length of one of the edges of a triangle is always smaller than the sum of the

other two edge lengths. A similar statement is true in plane Minkowskian geometry for a

certain class of triangles and goes with the name“Reverse Triangle Inequality”. However,

the properties of the Minkowskian geometry give rise to a number of such inequalities as

will be explored in detail over the succeeding sections. The purpose of this chapter is to

introduce and prove a number of these inequalities that hold for triangles residing on a

Minkowski plane. To our knowledge, except for the “Reverse Triangle Inequality”, none

of the inequalities presented in this chapter, have been explored in the literature before.

In addition to the geometrical interest, such inequalities constitute an essential part of

finite element methods, such as Regge Calculus in the General Theory of Relativity where

the space-time is represented by a lattice. In particular, the fact that the relevant edge

lengths of a certain simplex, for instance a tetrahedron, satisfy the Euclidean triangle

inequality guarantees that the geometry of the space confined within this tetrahedron is

Euclidean. Similarly, to ensure that the geometry inside the simplices used to build a

lattice space-time is Minkowskian, one has to ensure that the length of any three edges

that form a triangle in a Minkowski plane satisfy the relevant triangle inequalities in

Minkowskian geometry. More specifically, in gradually building the space-time lattice in

“Parallelisable Implicit Evolutionary Method”, or any other evolutionary method in the

context of Regge Calculus, one has to ensure that these inequalities are satisfied at each

stage of evolution.

5.2 Preliminaries

Let L2 be the vector space R2 provided with the Minkowskian (Lorentzian) inner product:

~v · ~u = v1u1 − v2u2
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where ~v = (v1, v2) and ~u = (u1, u2).

In L2 a vector ~v is space-like if ~v · ~v > 0, time-like if ~v · ~v < 0 and null if ~v · ~v = 0.

The norm of a vector ~v, ||~v||, is defined by
√
|~v · ~v| and is evidently always positive. Let

~e1 = (1, 0) and ~e2 = (0, 1). A vector ~v is called“future-directed” if ~v · ~e2 > 0. Furthermore,

a vector ~u is called “right-directed” (respectively “left-directed”) if ~u · ~e1 > 0 (respectively

~u · ~e1 < 0) [Birman & Nomizu 1984].

As stated in appendix (A), by Minkowski plane we mean a plane with (−, +) signa-

ture or equivalently, a plane with a space-like normal. Such a plane contains time-like,

space-like and null lines.

Earlier, we mentioned that the celebrated “triangle inequality” in Euclidean geometry

has a counter-part in Minkowskian geometry known as the “Reverse Triangle Inequality”.

This inequality is valid for pure space-like triangles by which we refer to a triangle built

C
x

t

B

Aa

c

b

Figure 5.1: A Pure Space-Like Triangle. The Reverse Triangle Inequality states: a > b+c

out of only future-directed space-like edges. The “Reverse Triangle Inequality” states

that the sum of lengths of the two edges of a pure space-like triangle is smaller than the

length of their sum. It is well known that the “Reverse Triangle Inequality” is valid for
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pure time-like triangles as well. By a pure time-like triangle we refer to a triangle built

out of only future-directed time-like edges.

As was mentioned in the previous chapter, a pure space-like triangle however is not

the only possible type of triangle that can be built on a Minkowski plane. One, in prin-

ciple, can use a number of different combinations of time-like, space-like and null edges

to build a triangle. To our knowledge, there do not exist triangle inequalities that relates

the edge lengths of these triangles with mixed edges.

This chapter is devoted to presenting a number of triangle inequalities in Minkowskian

geometry for triangles with mixed edges. In section (5.3), we describe two inequalities

that hold for triangles built out of two space-like and a time-like edge (SST triangles).

In section (5.4), another two inequalities that hold true in triangles with two space-like

and one null edge (NSS triangles) are introduced.

One note is in place with regards to the conventions used in this chapter. The label

of a vector without an arrow at the top of it is meant to refer to the norm of that vector

and therefore u refers to the norm of vector ~u. We also follow the convention of calling

the norm of an edge in a triangle with the lower case character corresponding to the label

of the opposite vertex of that triangle. Finally, in all the figures, the dashed lines are

meant to present the null lines.

5.3 Triangle Inequalities for a SST Triangle

For the proof of proposition 1 in SST triangles, we introduce the notion of a “twin tri-

angle” to a certain SST triangle. To build a twin triangle to a SST triangle, 4CAB, we

introduce a “twin” vector to the right-directed space-like vector ~CA, say ~CA′ as shown in
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Figure 5.2: ~CA′ is the “twin” vector of ~CA.

figure (5.2). By a “twin” vector, we mean ~CA′ to be a time-like vector having the same

norm as ~CA such that the angle between ~CA′ and the t-axis is equal to that between ~CA

and the x-axis. As shown in figure (5.2), a new triangle 4CBA′ is formed. Depending

on the construction of triangle 4CBA, ~BA′, can be either time-like or space-like. The

following lemma states the required conditions for ~BA′ to be time-like.

Lemma If − | ~CB|
| ~CA|

~CA· ~CM
~CB· ~CM

> 1, then ~BA′ is time-like. Here, ~CM is the right-directed

null vector associated with the null cone of vertex C.

Proof. Suppose that in an arbitrary coordinate system vectors ~CA and ~CB are given

by:


~CA = b (sinh β t̂ + cosh β x̂)

~CB = a (cosh α t̂ + sinh α x̂)

~CM = m (t̂ + x̂)

(5.1)

where m is an arbitrary scalar

We now show that the stated condition in this lemma is equivalent to α > β where α

is the angle between ~CB and the t-axis while β is the angle between ~CA and the x-axis

as shown in figure (5.2). To see this, we take the dot product of vectors ~CA and ~CB
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with ~CM , using the representations stated in equation (5.1). We have

~CA · ~CM = m b (cosh β − sinh β) = m b eβ

~CB · ~CM = −m a (cosh α− sinh α) = −m a eα

and thus

−|
~CB|

| ~CA|

~CA · ~CM

~CB · ~CM
=
−a

b

m be−β

−m ae−α

but as stated in the lemma

−|
~CB|

| ~CA|

~CA · ~CM

~CB · ~CM
=

eα

eβ
> 1

Consequently,

eα > eβ ⇒ α > β �

We now prove that, if α > β, then ~BA′ is time-like.

In triangle 4CBA we have:

~AB = ~CB − ~CA

Squaring both sides of the above equation and noting that ~AB is space-like (so | ~AB|2 > 0),

we have:

AB2 = −CB2 + CA2 − 2 CA CB sinh (α− β) > 0

which in turn means:

CA2 − CB2 > 2 CA CB sinh (α− β)

and since α > β, 2 CA CB sinh (α− β) > 0. Thus one can square both sides of the

above equation to find:

(CA2 − CB2)2 > 4 CA2 CB2 sinh2 (α− β)

which can be rewritten as:

(CA2 − CB2)2 > 4 CA2 CB2 cosh2 (α− β)− 4 CA2 CB2
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and finally get:

(CA2 + CB2)2 > 4 CA2 CB2 cosh2 (α− β)

taking the square root of this last equation1 yields:

2 CA CB cosh2 (α− β)− CA2 − CB2 < 0 (5.2)

but equation (5.2) indeed implies that ~BA′ · ~BA′ < 0 which in turn means if α > β, ~BA′

is always time-like. In this case, the twin triangle is a pure time-like triangle. �

We will now state an inequality that holds for SST triangles with a pure time-like twin:

Proposition 1. In a SST triangle with a pure time-like twin triangle, b > c + a.

In other words, the norm of the right-directed space-like edge is always larger than the

sum of the norms of the time-like and the left-directed space-like edge.

Proof. As triangle 4CBA′ is a pure time-like triangle the “Reverse Triangle

Inequality” holds for it:

b > a + c2 (5.3)

where | ~BA′| = c2.

We know that: 4CBA′ : ~BA′ = ~CA′ − ~CB ⇒ c2
2 = a2 + b2 − 2a b cosh (α− β)

4CAB : ~AB = ~CB − ~CA ⇒ c2 = b2 − a2 − 2 a b sinh (α− β)
(5.4)

and thus:

c2
2 − c2 = 2 b (b− a e−(α−β)) (5.5)

1Note that all the variables appearing on both sides of this inequality are indeed positive. CA and
CB are norms of vectors which are defined to be positive and the hyperbolic cosine is always larger than
1. Thus, in taking the square root, the direction of the inequality sign does not change.
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The fact that α > β, implies that: e−(α−β) < 1 and thus:

a e−(α−β) < a

b− a e−(α−β) > b− a

but from the second expression of equation (5.4) it is clear that since ~AB is space-like

and α > β, then b > a. Using this fact, one concludes that b− a e−(α−β) > b− a > 0.

It is then clear that:

c2
2 − c2 > 0 (5.6)

Since c2 and c are norms of edges, by definition, they are positive and thus the above

equation implies:

c2 > c (5.7)

Combining (5.7) and (5.3), one arrives at:

b > c + a. �

Proposition 2. In a SST triangle, it is always possible to show that: c < a + b.

In other words, in a SST triangle, the norm of the left-directed space-like edge is always

smaller than the sum of the norms of the time-like and the right-directed space-like edge.

Proof. To prove the inequality stated in proposition 3, we pursue a rather dif-

ferent line of argument. The null vector ~CM in figure (5.3) can always be written as:

~CM = m (t̂ + x̂)

where m is a positive scalar. In the reference frame of a certain observer, the edges of
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Figure 5.3: Vector ~CM is null.

the triangle 4CBA have the following coordinate representation:
~CB = a (cosh α t̂ + sinh α x̂)

~CA = b (sinh β t̂ + cosh β x̂)

~AB = c (sinh ξ t̂− cosh ξ x̂)

Taking the dot product of ~CA and ~CB with the null vector ~CM , one has:

~CB · ~CM = a m (sinh α− cosh α) = −a m e−α (5.8)

~CA · ~CM = b m (cosh β − sinh β) = b m e−β (5.9)

Subtracting the above two equations yields:

( ~CA− ~CB) · ~CM = a m e−α + b m e−β ≤ m (a + b)

but ( ~CA− ~CB) = − ~AB which in turn implies:

− ~AB · ~CM ≤ m(a + b) (5.10)

on the other hand, one has:

− ~AB · ~CM = −m c (− sinh ξ − cosh ξ) = m c eξ (5.11)

Combining equations (5.10) and (5.11), one arrives at:

c eξ < (a + b)
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Noting the fact that since ξ > 0 then eξ > 1, the above equation in turn implies:

c < a + b. �

5.4 Triangle Inequalities for a NSS Triangle

Before stating propositions (3) and (4) concerning inequalities in triangles with two space-

like and one null edge, we need to introduce the notion of two co-directed vectors as well

as two anti-directed vectors. Two vectors ~u and ~v are called co-directed if sgn (~v.~e1) =

sgn (~u.~e1) and sgn (~v.~e2) = sgn (~u.~e2). They are called anti-directed if one or neither of

these two conditions hold.

C

t

x

a

M

m

β A

c

Figure 5.4: ~CA and ~CM are co-

directed but they are both anti-

directed with respect to ~AM .

M

C

a

c

ξ

t

x
Am

Figure 5.5: ~CA and ~AM are anti-

directed but ~CA and ~CM are co-

directed.

Another important notion that will be used in the next proposition concerns space-

like vector. We call a vector ~v more space-like than ~u, if ~v · ~e1 > ~u · ~e1.
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Finally, it is beneficial to divide the NSS triangles, constructed from only future-

directed vectors, into two main groups: those with two co-directed space-like vectors and

those with two anti-directed space-like vectors. Proposition (4) concerns the first group

of NSS triangles and proposition (5) concerns the second group.

Proposition 3. In a NSS triangle with two co-directed space-like edges, the

length of the more space-like vector is always larger than the length of the less space-like

vector.

Proof. This inequality is rather intuitive as seen in figure (5.4). It is intuitively

clear that for the difference of two future directed space-like vectors to be null, the “more

space-like vector” must have a larger length.

To see this rigourously however, it is handy to have the coordinate description of

the edges constituting triangle 4CAM in the frame of reference of a certain observer.

Without loss of generality, let us assume that vector ~CA lies along the x-axis:
~CA = m x̂

~CM = a (sinh β t̂ + cosh β x̂)

~AM = c (t̂− x̂)

In triangle 4CAM , one can write:
~CM = ~CA + ~AM

~CA = ~CM − ~AM

Taking the dot product of each of the above two expressions with itself and using the

shorthand notation introduced in figure (5.4), one arrives at: a2 = m2 − 2 m c

m2 = a2 + 2 a c eβ



Chapter 5. Triangle Inequalities in the Minkowski Plane 73

where β is the angle between ~CM and the x-axis. Adding the above two equations and

eliminating 2 c, one obtains:

a eβ = m

Since β > 0, then eβ > 1 and thus

m > a or | ~CA| > | ~CM |. �

Proposition 4. In a NSS triangle with two anti-directed space-like edges, the

length of the space-like vector which is co-directed with the null vector is always larger

than the length of the space-like vector which is anti-directed with respect to the null

vector.

Proof Pursuing the same line of reasoning as above in NSS triangle 4CAM ,

shown in figure (5.4), one has: 
~CA = ~CM − ~AM

~AM = ~CM − ~CA

Taking the dot product of each of the above two expressions with itself, one obtains: m2 = c2 + 2 a c eξ

c2 = m2 − 2 a m

Adding up the above two expressions, eliminating 2 a and rearranging, one arrives at:

c eξ = m

which in turn implies:

c < m or | ~AM | < | ~CA|. �
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5.5 Conclusion

In this chapter, we proved a number of inequalities for triangles with mixed edges on

Minkowski plane. We do not claim that we have presented all the triangle inequalities

that might hold between the edge lengths of triangles with mixed edges on a Minkowski

plane. However, this work is an important step in correctly building lattice space-times

in evolutionary methods in the context of Regge Calculus.

An interesting and at the same time reassuring point is that in triangles with null

sides, the arbitrary scalar, introduced to facilitate the proofs, does not appear in the final

inequality. This of course is what one expects as the scalar chosen to represent the null

vectors is completely aribitrary.



Chapter 6

Raychaudhuri’s Equation in Regge

Calculus

6.1 Introduction

Raychaudhuri’s equation has long been of significant importance in the proof of singu-

larity theorems. In addition, it has also been used in other relativistic fields such as

gravitational lensing, cracking of self-gravitating objects, etc (for a recent review see

[Ellis 2007]). Raychaudhuri’s equations represent the evolution of the quantities that

characterise a flow. These consist of expansion, shear and rotation of a congruence of

time-like (null) curves. The significance of the Raychaudhuri’s equations lie in the fact

that it clearly reveals the attractive nature of gravity in the absence of shear and vorticity.

To best of our knowledge this equation has never been considered in the realm of Regge

Calculus [Regge 1961].

Our purpose in this chapter is to find an analogue to Raychaudhuri’s equation in the

context of Regge Calculus. Such a treatment is essential as it enables us to correctly

interpret the dynamical results obtained using Regge Calculus. It also provides insight

75
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into the nature of collapse into a singular state in a skeletonised space-time. Moreover,

comparing the continuous results of General Relativity with their counter-parts in Regge

Calculus, will give us a better insight into the advantages and shortcomings of this finite

element method.

This chapter is organised as follows: In section (6.2), we briefly review Raychaudhuri’s

equations in continuum. Section (6.3) examines the behaviour of geodesics in skeletonised

space-times. In section (6.5.1), we derive analogues to expansion and shear for (2+1)-

dimensional lattice space-times. Section (6.6) covers a derivation of similar nature for

(3+1)-dimensional skeletonised space-times. We close this chapter with some concluding

remarks.

In this work, we assume that the space-times under consideration are close to Minkowskian,

i.e. the amount of curvature residing on each bone is very small (weak field limit). In

addition, our derivations are valid for a congruence of time-like geodesics.

6.2 Raychaudhuri’s equation in the Continuum

To contrast the Raychaudhuri equation with its Regge Calculus analogue, it is useful to

review this equation in the continuum first. As was mentioned earlier, Raychaudhuri’s

equations describe the evolution of expansion, shear and vorticity of a congruence of

time-like (null) curves. The equation corresponding to the evolution of expansion param-

eter has however received more attention and it is in fact this equation that goes with

the name of Raychaudhuri’s equation (it is sometimes also known as Riccati equation

[Kar & SenCupta 2007]); we will also follow this convention. In what follows, we will

concentrate on time-like curves and later on will only consider time-like geodesics.
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For a flow of time-like curves, with 4-velocity vector field, ~v, and acceleration aα = vα
;βvβ,

the Raychaudhuri equation is given by:

dθ

dτ
= −1

3
θ2 − 2σ2 + 2ω2 + aα

;α −Rαβvαvβ (6.1)

In the above equation θ = vα
;α represents expansion. The shear scalar is represented by

σ where σ2 = σαβσαβ and

σαβ = v(α;β) − a(αvβ) −
1

3
θhαβ

with

hαβ = gαβ − vαvβ/(vσv
σ)

being the projection tensor. Finally, ω2 = ωαβωαβ is the vorticity or rotation where

ωαβ = v[α;β] − a[αvβ]

If the energy-matter content of the space-time is a perfect fluid, given by

T µν = (P + ρ)uµuν + P gµν ,

the last term on the right hand side of equation (6.1) can be replaced by −1
2
κ(ρ + 3P )

using Einstein’s Equation. Provided that ρ + 3P ≥ 0, for a congruence of time-like

geodesics, clearly, it is only vorticity that opposes collapse. The sign of acceleration is in-

definite (of course when considering time-like geodesics, the acceleration term vanishes).

Shear, energy density and pressure all promote collapse.

We close this section by reminding the reader of the Focusing Theorem. The focusing

theorem, an important consequence of Raychaudhui’s equation, states that if the strong

energy condition holds, i.e. ρ+3P ≥ 0, a time-like geodesic congruence that is hypersur-

face orthogonal (i.e. ωαβ = 0) will contract and collapse to a singularity during a finite

amount of time.
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6.3 Geodesics in Regge Calculus

One can obtain much insight into the structure of a skeletonised space-time by examining

the behaviour of two initially parallel geodesics, enclosing a bone. The derivation of ana-

logues to expansion and shear scalar is much simplified by this preliminary consideration.

We should mention that, in all the derivations presented in this chapter, we take the con-

gruence of the geodesics to be irrotational. The space-time curvature is not continuous

in Regge calculus but, as stated earlier, is concentrated on (n − 2)-dimensional bones.

As the geometry is flat within simplices, geodesics are straight lines. When a geodesic

moves from one simplex to the next, the transition is such that the angle between the

geodesic and the normal to the entrance face is equal to that between the geodesic and

the normal to the exit face. [Chakrabarti et al. 1999]. Figure (1) shows this clearly for a

skeletonised 2-dimensional manifold. Here the building blocks are triangles and the cur-

vature is concentrated on vertices or 0-dimensional simplices (clearly, for a 2-dimensional

skeletonised manifold, face corresponds to edge) .

Figure 6.1: The paths of two initially parallel geodesics on a triangulated 2-d manifold,

enclosing a vertex. As shown, representation is not unique, however, the total rotation

of the two geodesics with respect to their initial paths always equals the deficiency of the

enclosed bone.

Two initially parallel geodesics will remain parallel unless they enclose a bone. The

rotation of one of the geodesics with respect to the other is equal to the deficit an-
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gle concentrated on the enclosed bone. There is however no unique representation for

the behaviour of the geodesics [Chakrabarti et al. 1999]. One can take one of the two

geodesics to remain unchanged and the other one to rotate by an angle equal to the de-

ficiency of the enclosed bone. Equally, one can take each of the two geodesics to rotate,

with respect to its initial path, by an angle equal to half of the deficiency of the enclosed

bone as shown in the right panel of figure (6.1). It is important to point out that such

rotation is only revealed upon examining two geodesics enclosing a bone. Looking at one

single geodesic will not uncover this rotation (and in turn the curvature). This of course

is reminiscent of the continuum case. The curvature of a manifold is only revealed by

considering the paths of two initially parallel geodesics.

To conclude this section we note that, if one considers two initially parallel rays that

enclose a number of vertices between them, one can always think of one of the two

geodesics to rotate with respect to the other by an angle that is equal to the sum of

deficit angles on the bones enclosed [Chakrabarti et al. 1999].

6.4 Expansion of Two non-Parallel Geodesics in Flat

Space-Time

To analyse the evolution of a congruence of time-like geodesics in a skeletonised space-

time, consider the two geodesics, g1 and g2, shown in figure (6.2). We initially assume

that these two geodesics do not enclose any bones on their way, thus the the expansion

(contraction) considered here arises merely from the paths of the two geodesics.

If extended, these two geodesics will cross each other at an angle α. Suppose that the

proper time is measured along geodesic g1. In addition, suppose that the distance between
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Figure 6.2: Paths of Two Non-Parallel Geodesics in a Flat Space-Time

the two geodesics, at a given proper time, is defined to be the length of a perpendicular

line segment to g1, starting from point B on g1, and extended until crossing g2 at point A.

If there exists no curvature, then after proper time ∆τ has elapsed along g1, the distance

between the two geodesics is increased by ∆r given by:

∆r = ∆τ tan α (6.2)

thus

A′B′ = AB + ∆τ tan α (6.3)

The fact that we choose our congruences of geodesics to be irrotational guarantees that

any two geodesics, chosen from a given congruence, are coplanar. Therefore, this result

is always true independent of the dimension of the flat space-time under consideration.

6.5 Raychauduri’s Equation in (2+1)-Dimensional Skele-

tonised Space-Times

To find an analogue to Raychaudhuri’s equation in the framework of Regge Calculus, it is

easier to first examine expansion and shear in a (2+1)-dimensional space-time. The cur-

vature of a 3-dimensional skeletonised manifold is concentrated on 1-dimensional edges.

In general, this bone can be oriented in three different positions with respect to the plane
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Figure 6.3: Possible orientation of a bone with respect to the plane of two geodesics in

(2+1)-dimensions.

that passes through any two geodesics enclosing this bone:

(i) The bone is parallel or anti-parallel to this plane (the case where the bone lies in

the same plane is also classified as a special case belonging to this category).

(ii) The bone is orthogonal to the plane passing through the two geodesics.

(iii) The bone pierces through the plane passing through the two geodesics, making an

arbitrary angle with the geodesic under consideration (or a beam parallel to them

passing through the perforation location).

Different orientations of a bone with respect to the plane of two geodesics is shown in

figure (6.3). The particular orientation described in (i) does not result in any deviation

in the path of any of the two geodesics. Obviously, the second case in the above list

is a special case of the third one and thus we will examine the third case in detail. In

both three and four dimensional cases, we will assume that the deficiency corresponding

to each bone is small and the bones enclosed are all parallely oriented (weak field limit)

[Regge 1961].
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6.5.1 Distance between two geodesics in (2+1) Skeletonised

Space-Times

Suppose now that the two geodesics g1 and g2 enclose a bone of positive deficiency ε,

represented by a unit vector ~P chosen on this bone, as shown in figure (6.4). As the

proper time is measured along g1, O1O2 and O′
1O

′
2 are taken to be perpendicular to g1.

Without loss of generality, we assume that upon enclosing bone ~P geodesic g1 rotates

towards g2 and g2 continues on its old path. We have chosen the unit vector ~AO′
2 on g1

to represent this geodesic (Note that the results obtained below remain unchanged, if one

chooses to measure the proper time along g2 while keeping it on its initial path). The

g
1
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A

O’
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O’’
2
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χ
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Figure 6.4: Paths of Two Geodesics Enclosing a Bone of Deficiency ε in (2+1)-dimensions

distance between g1 and g2 after proper time ∆τ elapses on g1 is given by: O′
1O

′
3. This

change of distance between g1 and g2 in turn is given by:

O′
1O

′
3 = O1O2 + ∆τ tan α−O′

2O
′
3 (6.4)

where the last term comes from the distortion caused by the deficiency on the ~P . Upon

passing by ~P , vector ~AO′
2 undergoes a rotation, by an angle ε, with ~P as the axis of the

rotation. Calling the rotated ~AO′
2,

~AO′′
2 , it is easy to see that the length of ~AO′′

2 is not
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necessarily equal to AO′
3. To calculate O′

2O
′
3, it is enough to find the angle between ~AO′

2

and ~AO′′
2 . As we are considering the rotation of vector ~AO′

2 around axis ~P , we have:

~AO′′
2 = ~P × ( ~AO′

2 × ~P ) cos ε + (~P × ~AO′
2) sin ε + ~P ( ~AO′

2 · ~P ) (6.5)

We take the dot product of both sides of equation (6.5) by ~AO′
2 to get:

~AO′
2 · ~AO′′

2 = ~AO′
2 · [~P × ( ~AO′

2 × ~P )] cos ε (6.6)

+ ~AO′
2 · (~P × ~AO′

2) sin ε + ~AO′
2 · ~P ( ~AO′

2 · ~P )

which can be written as:

~AO′
2 · ~AO′′

2 = ~AO′
2 · [ ~AO′

2(~P · ~P )− ~P (~P · ~AO′
2)] cos ε (6.7)

+ ~P · ( ~AO′
2 × ~AO′

2) sin ε + ~AO′
2 · ~P ( ~AO′

2 · ~P )

Of course AO′
2 = AO′′

2 and we have chosen both of them to be unit vectors. Thus,

simplifying equation (6.7) yields:

~AO′
2 · ~AO′′

2 = ~AO′
2 · ( ~AO′

2 − ~P cos φ) cos ε + ( ~AO′
2 · ~P ) cos φ

Calling the angle between the two vectors ~AO′
2 and ~P , φ, and noting that χ is the angle

between ~AO′
2 and ~AO′′

2 as shown in figure (6.4), we can simplify the above equation to

obtain:

cos χ = (1− cos2 φ) cos ε + cos2 φ = sin2 φ cos ε + cos2 φ (6.8)

It is easy to see that:

O′
2O

′
3

AO′
2

= tan χ ⇒ O′
2O

′
3 = tan χ (6.9)

Therefore, O′
1O

′
3 is given by:

O′
1O

′
3 = O′

1O
′
2 −O′

2O
′
3

O′
1O

′
3 = O1O2 + ∆τ tan α− tan χ (6.10)

where tan χ can be obtained as follows. Equation (6.8) reads:

cos χ = sin2 φ cos ε + cos2 φ (6.11)
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Since ε is very small (weak field limit), we expand cos ε around zero and write:

cos χ = sin2 φ (1− ε2

2
) + cos2 φ = 1− ε2

2
sin2 φ (6.12)

and thus

cos2 χ = (1− ε2

2
sin2 φ)2 = 1− ε2 sin2 φ + H.O.(ε4) (6.13)

which in turn yields:

tan2 χ =
ε2 sin2 φ

1− ε2 sin2 φ
(6.14)

tan2 χ = ε2 sin2 φ(1− ε2 sin2 φ)−1 (6.15)

tan2 χ = ε2 sin2 φ + H.O.(ε4) (6.16)

Using this result in equation (6.10), we obtain:

O′
1O

′
3 = O1O2 + ∆τ tan α− ε sin φ (6.17)

where α is the angle between the two geodesics, ε is the deficiency of the bone and φ is

the angle between ~P and geodesic g1.

6.5.2 Expansion and Shear in (2+1)-dimensional Skeletonised

Space-Times

Figure (6.5) depicts the circular cross section of a congruence of time-like geodesics.

Three geodesics are shown in this figure. We make the following assumptions:

Angle between ~P and g2 : φ

Angle between ~P and g3: ξ

Angle between g1 and g2: α

Angle between g1 and g3: β

After time ∆τ elapses on g1, using the results obtained in the previous section, we have: O′
1O

′
2 = O1O2 + ∆τ tan α− ε sin φ

O′
1O

′
3 = O1O3 + ∆τ tan β − ε sin ξ
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Figure 6.5: The Circular Cross Section of a Congruence of Geodesics in a (2+1)-

dimensional Skeletonised Space-time

where O1O2 = O1O3 = rI and rI stands for the initial radius of the circular cross section.

Taking the average of O′
1O

′
2 and O′

1O
′
3 to find the average expansion, one finds:

a =
O1O2 + O1O3

2
= rI +

∆τ

2
(tan α + tan β)− ε

2
(sin φ + sin ξ) (6.18)

and thus the expansion is given by:

θ =
∆τ

2
(tan α + tan β)− ε

2
(sin φ + sin ξ) (6.19)

The first term on the right hand side of equation (6.19) represents an average expansion

caused by the paths of the geodesics and the fact that we chose them not to be parallel.

This expansion was explained in detail in section (6.5.1) while the second term on the

right hand side represents an average contraction caused by the deficiency of the bone.

Of course if the bone deficiency is negative, this term also represents expansion.

To obtain the shear scalar, we subtract the average expansion, a, from O′
1O

′
2 and

O′
1O

′
3 to obtain: O′

1O
′
2 − a = ∆τ

2
(tan α− tan β)− ε

2
(sin φ− sin ξ) = σ

O′
1O

′
3 − a = −

(
∆τ
2

(tan α− tan β)− ε
2
(sin φ− sin ξ)

)
= −σ
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where σ indeed plays the role of the shear scalar. Again, had we chosen the congruence

to be a congruence of initially parallel geodesics, the term ∆τ
2

(tan α − tan β) would not

have appeared in the expression for σ. The second term in the expression of σ however

represents the net effect of the curvature residing on the bone.

6.6 Raychaudhuri’s Equation in (3+1)-Dimensional

Skeletonised Space-Times

We will now attempt to find an analogue to expansion and shear scalar in a (3+1)-

dimensional skeletonised space-time. In a skeletonised 4-dimensional manifold, the cur-

vature resides on triangles, where a number of 4-simplices meet. A vector that is parallel

transported around a loop enclosing an isolated triangle rotates by an angle equal to

the deficiency of this triangle. In this process, the projection of this vector on the tri-

angle remains unchanged and only the orthogonal component of this vector is rotated

[Wheeler 1964].

u
v

A

B

C

v’

Figure 6.6: Vector ~v is parallel transported around a loop enclosing Triangular bone

ABC.

Let’s examine the change in a vector ~v, parallel transported around a loop that en-

closes a triangular bone with deficiency ε, as shown in figure (6.6). Suppose vector ~u is
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the normal to this triangular bone. One can then break vector ~v into two orthogonal

components, one parallel to ~u and the other perpendicular to it:

~v = ~u× (~v × ~u) + ~u(~u · ~v) (6.20)

where the first term on the right hand side of equation (6.20) is orthogonal to ~u and

will be denoted by ~v⊥ and the second term on the right hand side of equation (6.20) is

parallel to ~u and will be denoted by ~v||. We take the axis of rotation to be:

~P =
~v⊥
| ~v⊥|

as this is the simplest choice arising from the definition of parallel transport of the com-

ponent that is perpendicular to the plane of the triangular bone, along a path encircling

the bone. Upon rotation, we get:

~v′|| =
~v⊥
| ~v⊥|

× (~v|| ×
~v⊥
| ~v⊥|

) cos ε + (
~v⊥
| ~v⊥|

× ~v||) sin ε (6.21)

which can be written as:

~v′|| =
[
~v||(

~v⊥
| ~v⊥|

· ~v⊥
| ~v⊥|

)− (~v|| ·
~v⊥
| ~v⊥|

)
~v⊥
| ~v⊥|

]
cos ε + (

~v⊥
| ~v⊥|

× ~v||) sin ε (6.22)

Simplifying the above expression:

~v′|| = ~v|| cos ε + (
~v⊥
| ~v⊥|

× ~v||) sin ε (6.23)

If ε is small, by expanding cos ε and sin ε, we can write:

~v′|| = ~v|| + (
~v⊥
| ~v⊥|

× ~v||)ε (6.24)

It is then clear that ~v′ is given by:

~v′ = ~v′|| + ~v⊥ = ~v|| + ~v⊥ + (
~v⊥
| ~v⊥|

× ~v||)ε (6.25)

which in turn reads:

~v′ = ~v + (
~v⊥
| ~v⊥|

× ~v||)ε (6.26)
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Thus, the change in the length of vector ~v, after rotation, is given by:

|~v′ − ~v| = |~v|||ε = (|~v| cos φ)ε (6.27)

where φ is the angle between ~u, the normal to the bone, and ~v.

6.6.1 Expansion in (3+1)-dimensional Skeletonised Space-Times

To obtain the expansion for a (3+1)-dimensional manifold, one follows a similar procedure

to that under-taken in section (6.5.1). There are however subtle differences between the

two which will be explained in this section. As was discussed earlier, in an irrotational

congruence of geodesics, independent of the dimension of a skeletonised space-time, one

can always pass a plane through any two geodesics of this congruence. The construction

here is similar to what we had in section (6.5.1) with the difference that the bone in this

case is a triangular one as shown in figure (6.7). Again, suppose that the proper time is

g
1

g
2

A

O’
2

O’’
2

O1

O2

O’
1

χ
O’3

u

Figure 6.7: Paths of Two Geodesics Enclosing a Bone of Deficiency ε in (3+1)-dimensions

measured along geodesic g1 and that the distance between the two geodesics is taken to

be the length of the line perpendicular to g1. After time ∆τ elapses, the distance between

g1 and g2 is O′
1O

′
3. If initially, the distance between the two geodesics is assumed to be

O1O2, then:

O′
1O

′
3 = O1O3 + ∆τ tan α−O′

2O
′
3 (6.28)
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where again the second term in the above equation is an expansion arising from the

original paths of the geodesics and the last term is a contraction due to enclosing a bone

with positive deficiency. α is the angle between the two geodesics if extended until they

cross. One is then to find O′
2O

′
3. To reach this goal, it is enough to find angle χ, the

angle between ~AO′
2 and ~AO′′

2 . Using equation (6.23), we have:

~AO′′
2 · ~AO′

2 = cos χ = cos2 φ cos ε + sin2 φ (6.29)

where we have used the fact that ~AO′
2 is a unit vector. As ε is a small quantity, we can

re-write the above equation as:

cos χ = cos2 φ(1− ε2

2
) + sin2 φ = 1− ε2

2
cos2 φ (6.30)

Taking on the same strategy as before, we find:

cos2 χ = (1− ε2

2
cos2 φ)2 = 1− ε2 cos2 φ + H.O.(ε4) (6.31)

sin2 χ = 1− cos2 χ = ε2 cos2 φ (6.32)

Thus:

tan2 χ = ε2 cos2 φ(1− ε2 cos2 φ)−1 (6.33)

tan2 χ = ε2 cos2 φ + H.O.(ε2) (6.34)

from which one finally arrives at:

tan χ = ε cos φ (6.35)

Since:

O′
2O

′
3

AO′
2

= tan χ (6.36)

again, noting that ~AO′
2 is a unit vector and using equation (6.35), we have:

O′
2O

′
3 = ε cos φ (6.37)
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Inserting this last result into equation (6.29), the expansion in a (3+1) dimensional

space-time is:

O′
1O

′
3 = O1O3 + ∆τ tan α− ε cos φ (6.38)

where, ∆τ is the time elapsed between the two measurements of the distance between

the two geodesics, ε is the deficiency of the enclosed triangular bone and φ is the angle

between g1 and the normal to this bone.

6.6.2 Shear in (3+1)-dimensinal Skeletonised Space-times

g
3

g
2

g
1

U

Figure 6.8: The cross section of a congruence of time-like geodesics in a (3+1)-dimensional

space is a sphere. The bones in this skeletonised space-time are triangles.

Figure (6.8) depicts the spherical cross section of a congruence of time-like geodesics.

As in the (2+1)-dimensional case, let’s make the following assumptions:

Angle between ~U and g2 : φ

Angle between ~U and g3: ξ

Angle between g1 and g2: α

Angle between g1 and g3: β

where ~U is the normal to the triangular bone enclosed by the three geodesics shown.

Again, we choose the representation where g1 remains unaffected and g2 and g3 rotate
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with respect to it. After time ∆τ elapses, using equation (6.38), we have equations: O′
1O

′
2 = O1O2 + ∆τ tan α− ε cos φ

O′
1O

′
3 = O1O3 + ∆τ tan β − ε cos ξ

Again, as the initial cross section is spherical, O1O2 = O1O3 = RI , where we have chosen

RI to denote the initial distance between g1 and g2 and g3. Taking the average of O′
1O

′
2

and O′
1O

′
3, one finds

a =
O′

1O
′
2 + O′

1O
′
3

2
= RI +

∆τ

2
(tan α + tan β)− ε

2
(cos φ + cos ξ) (6.39)

and thus the average expansion is found to be:

θ =
∆τ

2
(tan α + tan β)− ε

2
(cos φ + cos ξ) (6.40)

Following a similar approach to that of section (6.5.2), we find that the shear scalar σ is

given by the equations: O′
1O

′
2 − a = ∆τ

2
(tan α− tan β)− ε

2
(cos φ− cos ξ) = σ

O′
1O

′
3 − a = −

(
∆τ
2

(tan α− tan β)− ε
2
(cos φ− cos ξ)

)
= −σ

6.7 Conclusion

In this chapter, we examined the average expansion and shear scalar in (2+1) and (3+1)-

dimensional space-times in the weak field limit. The general form of these flow character-

istics contain trigonometric functions of the angles between the geodesics and the bones

in (2+1)-dimensional case. In the case of (3+1)-dimensional skeletonised space-times,

the expressions of expansion and shear scalar contain the trigonometric functions of the

angles between the geodesics and the normal to the triangular bones. Of course this

behaviour is not far from what one expects from Regge Calculus. It is however clear

that generalising the expressions for average expansion and shear scalar in the presence

of multiple bones is quite involved.



Chapter 7

Conclusion and Future Work

In this thesis, the “Parallelisable Implicit Evolutionary Scheme for Regge Calculus”, a

(3+1)-evolutionary method in the context of Regge Calculus, was analysed. Causality

was an aspect that was not included in the PIES properly. Following a detailed analysis,

we showed how causality can be accounted for in this scheme. Ambiguities associated

with the notion of time in this formalism were addressed. The revised algorithm was

used to reproduce the spherical FLRW universe with the surfaces of the 5-Cell and the

16-Cell polytopes as the underlying lattices. Three appropriate time functions for the

numerical example were introduced. It was shown that the revised algorithm produced

a good approximation to the spherical FLRW universe. The most important conclusion

however was that, independent of the choice of the time function, the revised algorithm

resolves the problem of stop point, as faced previously by others employing the PIES.

One important issue that is in need of further investigation is the issue of exact lapse

of time in PIES. In particular, it is important to find an algorithm through which one

can calculate the 4-volume of the 4-dimensional structure sandwiched between two con-

secutive spatial foliations. Another issue certainly worthy of further consideration is to

reproduce and follow the evolution of other exact solutions to Einstein’s equations using

92
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the PIES. Such considerations provide ample opportunities to understand the cons and

pros of PIES better. Of interest are solutions which are less symmetric compared to

FLRW such as Binachi Universes which are homogeneous but anisotropic.

Undoubtedly, we are living during a glorious era for Astronomy. A number of differ-

ent projects and space telescopes are providing us with quite impressive data about the

universe we live in. A curious feature of this universe is its shape or topology. One crucial

application of the revised PIES algorithm is to examine the evolution of a universe with

non-trivial topology. It is of most interest to follow the evolution of such universes and

explore the possibility of having a universe with non-trivial topology yet compatible with

current observational data.

A part of this thesis was devoted to considering triangle inequalities in the frame-

work of Minkowskian geometry. A number of triangle inequalities for triangles made

with a combination of time-like, space-like and null edges were obtained. These inequal-

ities are the counter-parts of the “Reverse Triangle Inequality” which holds for triangles

constructed out of only space-like (time-like) edges. Such inequalities are essential in

ensuring the correct construction of a skeletonised space-time especially when employing

(3+1)-evolutionary methods in the context of Regge Calculus. In particular, to ensure

that the geometry inside a given simplex is Minkowskian, one has to ensure that the rele-

vant inequalities are satisfied. We obtained inequalities that hold in SST triangles as well

as NSS triangles. We plan to further study these inequalities in the future and examine

whether it is possible to express them using the sign of a Cayley-Menger determinant as

is done in the case of Euclidean triangles.

Finally, in this thesis, the Raychaudhuri equation in the context of Regge Calculus

was examined. The discretised counterparts of average expansion and shear scalar were
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derived for both (2+1)-dimensional and (3+1)-dimensional space-times in the weak field

limit. As expected, in the (2+1)-dimensional case, the trigonometric functions of the

angles between the edge bones and the geodesics appear in the discretised expressions of

average expansion and shear scalar. In the case of a (3+1)-dimensional space-times, a

similar situation arises. In particular, the trigonometric functions of the angles between

the geodesics and the normal to the triangular bones appear. The results of this chapter

clearly show that the expressions for average expansion and shear scalar will be quite

complicated when the congruence of geodesics encloses a number of bones.



Appendix A

A Note about the Minkowski Plane

All the area calculations, presented in appendix (B), are based on the geometric inter-

pretation of the cross product. To be more specific, in Euclidean geometry, the norm

of the cross product between two vectors ~u and ~v represents the area of the parallelo-

gram spanned by them. Since the notion of area is meaningful in both Euclidean and

Minkowskian geometry, one can interpret the norm of the cross product of two future

directed vectors of the same type as the surface area of the parallelogram spanned by

them [Yaglom 1979]. As we will show later, one cannot always use this notion directly

to find the surface area of a time-like bone. Before starting our search for formulae for

the areas of different types of bones in a 4-dimensional space-time, it is essential to first

clarify what we mean by the expression “Minkowski Plane”. We also need to treat the

notion of angle in a Minkowski plane comprehensively.

A Minkowskian plane is a plane with a space-like normal. The geometry of this plane

is the so-called Minkowskian or Lorentzian geometry represented by the following metric:

ds2 = dt2 − dx2

The angles between the vectors of this plane are hyperbolic angles defined with respect

to the Lorentzian length of the arc of the unit hyperbola confined between them (in op-
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Figure A.1: Hyperbolic Angle in Minkowski Plane. It is quite easy to see why a hyperbolic

angle between a space-like and a time-like vector is not defined. They obviously cannot

confine a hyperbolic arc between them.

position to a circular angle as defined in a Euclidean plane with reference to a circle). As

shown in figure (A.1), a hyperbolic angle in a Minkowskian plane is only defined between

either two time-like or two space-like vectors. The reason is that the arc of a unit hyper-

bola can only be confined between either two time-like or two space-like vectors. As is

evident from figure (A.1), it is impossible for a time-like and a space-like vector to confine

part of a hyperbolic arc between them. Consequently, an angle between a space-like and

a time-like vector is not defined. Thus, for example, no angle is defined in a triangle with

one null side, one time-like side and one space-like side. In a triangle with two space-like

and a time-like edge, only one angle is defined: the hyperbolic angle between the two

space-like edges.

To prevent any possible confusion over this definition, let us look at an example where

the above definition might become confusing. Figure (A.2) depicts a 3-dimensional space

equipped with a metric of Lorentzian signature. It is important to distinguish between
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W
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V’

t
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Figure A.2: A 3-dimensional space equipped with a metric of signature +1 which we

choose to represent by (− + +). ~W and ~W ′ are in the x − y plane while vectors ~V and

~V ′ are in the y − t plane. The x − y plane is space-like, i.e. it has a time-like normal,

while the y − t plane is time-like, i.e. it has a space-like normal.

the two types of angles subtended by the pair of space-like vectors, ~V and ~V ′, and the pair

of space-like vectors, ~W and ~W ′. Although vectors ~V and ~V ′ are space-like, they span

a sub-space with a positive definite signature or in other words a plane with a time-like

normal. The x− y plane where ~V and ~V ′ reside is a space-like surface and thus the angle

between these two space-like vectors is circular as is the case with any angle in Euclidean

geometry (which is incidentally the flat geometry with positive definite signature). The

status of ~W and ~W ′ is however, rather different. ~W and ~W ′ span a time-like plane,

characterised by semi-definite signature which we choose to represent with (−+). The

normal to the y − t plane, the plane spanned by ~W and ~W ′, is space-like. The angle

between ~W and ~W ′ is then hyperbolic and is based on the Lorentzian length of the arc

of the unit hyperbola confined between them.



Appendix B

Areas of Triangles on the Minkowski

Plane

In this appendix, we choose to represent a vector AB, which is an edge of a triangle

4CAB, with AB instead of ~AB as this notation is more convenient for the purpose

of this appendix. In addition, in this appendix, we follow the convention of calling the

norm 1 (taken to be a real and positive quantity) of an edge in a triangle with the lower

case character corresponding to the label of the opposite vertex of that triangle. Finally,

all the vectors used in construction of the triangles are assumed to be future directed

[Birman & Nomizu 1984].

B.0.1 Area of a SSS Triangle

Figure (B.1) shows the space-like triangle 4CAB. As per our earlier discussion on the

cross product, the area of 4CAB is given by:

4A2
4CAB = |CA× CB|2

1The norm of a vector ~u, used in this paper, is based on the definition given by Dray
[Birman & Nomizu 1984] and is taken to be |~u| =

√
|~u · ~u|.
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Figure B.1: A Space-Like Triangle.

but

|CA× CB|2 = CA
2
CB

2 − (CA · CB)2

which in turn yields

A2
4CAB = −1

4
b2 a2 sinh2 β (B.1)

A4CAB is evidently imaginary as required. It is desirable to have this area only in terms

of edge lengths as this is all the information at hand in a skeletonised space-time. It is

easy to see that

sinh2 β =
(a2 + b2 − c2)2

4a2b2
− 1

which in turn yields the familiar Heron formula [Heath 1921] given by:

A4CAB =
1

4

√
(b + a + c)(a + c− b)(b + c− a)(b + a− c) (B.2)

Using a Cayley-Menger determinant [Sommerville 1958], this can be written as:

A2
4CAB = − 1

16

∣∣∣∣∣∣∣∣∣∣∣∣∣

0 1 1 1

1 0 b2 a2

1 b2 0 c2

1 a2 c2 0

∣∣∣∣∣∣∣∣∣∣∣∣∣
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B.0.2 Area of a SST Triangle

Figure (B.2) shows the time-like bone 4CAB with two space-like and one time-like edge.

To find the area of a SST bone, one can always use the cross product of the two space-like
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Figure B.2: CA
∗

is the time-like twin of CA. The angle between CB and the t-axis is α

and thus the angle between CA
∗

and CB is (α− β).

edges in a manner that was described earlier. In particular the area of the SST triangle

4CAB is given by:

A4CAB =
1

2
b c sinh ξ

To obtain the value of sinh ξ in the above equation, take the dot product of the following

equation with itself:

CA + AB = CB (B.3)

b2 + c2 − 2 b c cosh ξ = −a2 (B.4)

Thus, sinh ξ is given by:

sinh2 ξ =
(b2 + c2 + a2)2 − 4 b2 c2

4 b2 c2
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Finally, the area of the SST triangle 4CAB is given by:

A2
4CAB =

1

16

(
(a2 + c2 + b2)2 − 4c2b2

)
(B.5)

We have however discovered another method to arrive at this result. In this method,

the area is obtained using a time-like and a space-like edge. In addition to being a new

method, one advantage of this approach is in that it finds an interpretation for the angle

between a space-like and a time-like edge.

As was stated earlier in appendix (A), the notion of angle between a time-like and

a space-like vector is not geometrically meaningful. To employ a time-like and a space-

like vector to find a triangular area, we first need to find an appropriate geometrical

definition for the dot product between a time-like and a space-like vector. Although the

dot product between such two vectors is defined in terms of their components, this does

not yield a suitable geometrical definition for the angle between the two vectors. To get

around this problem, we introduce the notion of a “twin” time-like vector to a space-like

vector. Without loss of generality, take a space-like vector CA and a time-like vector

CB, as shown in figure (B.2), to be given by: CA = |CA|(cosh αt̂ + sinh αx̂)

CB = |CB|(sinh βt̂ + cosh βx̂)

in a given coordinate system. It is clear that

CA · CB = |CA||CB| sinh (α− β) (B.6)

Define the time-like twin vector, CA
∗
, to CA such that

|CA| = |CA
∗| = b

and the angle between CA
∗

and the t-axis is equal to that between CA and x-axis as

shown in figure (B.2). Define a new binary operation, �, as follows:

CA
∗ � CB = b a sinh(α− β) (B.7)
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Comparing equations (B.6) and (B.7), it is clear that:

CA
∗ � CB = CA · CB

with the added bonus that the difference between angles α and β in equation (B.7) is

now geometrically meaningful, as (α−β) is now the angle between two time-like vectors.

If ~u is the space-like edge and ~v is a time-like edge of a time-like bone, it was mentioned

earlier that Regge defined the area of this bone to be:

4A2 = (~u · ~v)2 − ~u2~v2 (B.8)

Using equation (B.7) in Regge’s formula for the area of the time-like bone, the area of

4CAB is given by:

4A2
4CAB = (CA

∗ � CB)2 + (CA
∗
)2 CB

2
= b2 a2 cosh2(α− β) (B.9)

which is evidently always real.

It is again desirable to write this area only in terms of the edge lengths. To get the

formula of the area of 4CAB only in terms of its edge lengths, notice that 4CA∗B

is a pure time-like triangle [Birman & Nomizu 1984]. The area of 4CA∗B is given by:

1
2
b a sinh(α− β), then clearly:

A2
4CAB − A2

4CA∗B =
1

4
b2 a2 (B.10)

Thus to find the area of 4CAB in terms of its edge lengths, it suffices to find the area of

4CA∗B and insert it in (B.10). Writing the area of 4CA∗B in terms of its edge lengths,

one has:

A2
4CA∗B =

1

16

(
(b2 − a2 − c2)2

)
and using this in (B.10) yields:

A2
4CAB =

1

16

(
(a2 + c2 + b2)2 − 4c2b2

)
(B.11)
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This can now be written as a Cayley-Menger determinant:

A2
4CAB =

1

16

∣∣∣∣∣∣∣∣∣∣∣∣∣

0 1 1 1

1 0 b2 −a2

1 b2 0 c2

1 −a2 c2 0

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

B.0.3 Area of a NSS Triangle

x

t

D

M

Aθ

c

a

m

C
β δ

Figure B.3: 4CAM is a NSS Triangle with CM being the null edge.

4CAM in figure (B.3) is a (NSS) triangle with sides CA and AM space-like and

CM null. As was mentioned in chapter (3), drawing the null cone of a vertex in both a

time-like and a space-like bone, produces this particular type of triangle. We choose to

assign a real area to this type of triangle if it is part of a time-like bone and an imaginary

area if it is part of a space-like bone. In the following discussion, we assume that 4CAM

is attributed a real area; were an imaginary area attributed to 4CAM , the modulus of

this imaginary number would be the expression obtained in this section.

In triangle 4CAM , only one hyperbolic angle is defined and that is between vectors

AM and CA as they are both space-like. Therefore, to calculate the area of 4CAM ,
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one wishes to find |AM × CA|:

4A2
4CAM = |AM × CA|2 = (CA · AM)2 − AM

2
CA

2

but 2

CA · AM = −m c cosh θ (B.12)

and thus

A4CAM =
1

2
m c sinh θ (B.13)

as expected. To see how this area can be expressed in terms of a Cayley-Menger deter-

minant, it is enough to replace sinh θ in equation (B.13) with its value in terms of the

edge lengths. To do this, note that:

CA + AM = CM

(CA + AM) · (CA + AM) = CM · CM

m2 + c2 = −2CA · AM

but according to equation (B.12), we have

m2 + c2 = 2m c cosh θ

whence

sinh2 θ =
(m2 − c2)2

4m2c2

Therefore, one can rewrite the area of 4CAM as:

A2
4CAM =

1

16
(m + c)2(m− c)2 (B.14)

One can easily observe the resemblance of this formula with the Heron formula, keeping

in mind that CM is missing simply because it is null and thus |CM |2 = CM · CM = 0.

2The fact that this dot product has a negative sign comes from the nature of δ. The origin of
this sign is more evident if one uses the expanded form of CA = |CA|(sinhβt̂ + coshβx̂) and AM =
|AM |(sinh δt̂ − cosh δx̂) to obtain the dot product, where t̂ and x̂ are the unit vectors in the t and x
coordinate directions.
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This, put into a Cayley-Menger determinant, looks as follows:

A2
4CAM =

1

16

∣∣∣∣∣∣∣∣∣∣∣∣∣

0 1 1 1

1 0 m2 c2

1 m2 0 0

1 c2 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣
It is possible to write the surface area of a (NSS) triangle in another useful form that will

be used in section (B.0.4). This expression will be given in terms of one of the space-like

edges and the angle between the two space-like edges.

Start with

CA + AM = CM (B.15)

Taking the Dot product of both sides of (B.15) with CM and using the fact that CM is

null one obtains:

CA · CM = −AM · CM

Since CM is a null vector in the first quadrant, it can always be written as:

CM = a(t̂ + x̂)

where ‘a’ is a real and positive number. Then:

a m(cosh β − sinh β) = −a c(− cosh δ − sinh δ)

m(cosh β − sinh β) = c(cosh δ + sinh δ)

Solving for c, we have:

c = m
(cosh β − sinh β)

(cosh δ + sinh δ)

which can be re-written as:

c = m(cosh β − sinh β)(cosh δ − sinh δ)

= m(cosh (δ + β)− sinh (δ + β))
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In figure (B.3), δ + β = θ [Birman & Nomizu 1984], and thus:

m = c(cosh θ + sinh θ)

Using this result in equation (B.13), one obtains:

A4CAM =
1

2
c2(cosh θ + sinh θ) sinh θ (B.16)

B.0.4 Area of a NST Triangle

Figure (B.4) shows 4CAB along with the light cone of vertex B. Line segment BP is null

x

t

Aξ

b

c

a

C

B

P

Figure B.4: The time-like bone 4CAB is divided into a NST and a NSS triangle by the

null line passing through B.

and thus divides 4CAB into an (NSS) and an (NST) triangle. To calculate the area of

4CBP , it is easiest to subtract the area of 4APB from that of 4CAB. Since 4APB

is a (NSS) triangle, its area can be obtained using an equation similar to (B.16):

A4ABP =
1

2
c2(cosh ξ − sinh ξ) sinh ξ where cosh ξ =

(b2 + a2 + c2)

2b c

as shown in appendix (C). Thus the area of 4ABP , in terms of the edge lengths is given

by:

A4ABP =
A4CAB

2b2

(
(a2 + b2 + c2)− 4A4CAB

)
(B.17)
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Since the area of 4CBP is given by:

A4CBP = A4CAB − A4APB

One can use equation (B.17) to obtain the area of 4CBP as

A4CBP = A4CAB −
A4CAB

2b2
(a2 + b2 + c2) +

4A2
4CAB

2b2
(B.18)

The particular form of this equation facilitates the calculations of chapter (3).



Appendix C

Calculation of Hyperbolic Functions

for angle ξ

In figure (B.4), it is clear that:

A4CAB =
1

2
b c sinh ξ

from which:

sinh2 ξ =
4A2

4CAB

b2c2

and using the identity cosh2 ξ − sinh2 ξ = 1, one obtains:

cosh2 ξ =
(b2 + a2 + c2)2

4c2b2

The hyperbolic cotangent of ξ is then given by:

coth ξ =
(b2 + a2 + c2)

4A4CAB

108
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Flowchart of the Numerical Example
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Figure D.1: The flowchart associated with one step of the evolution of the FRW lattice

universe as described in section (4.5). The labels inside parentheses correspond to the

blocks of code, as given in appendix (E), performing the tasks described.



Appendix E

Mathematica Code of the Numerical

Example

This appendix contains the Mathematica code that was used in the reconstruction of the

pentatope FLRW universe. The tasks performed by individual blocks and sub-blocks of

the code are described in the flowchart of appendix (D) as well as the code itself.

111
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!!Variable, Function and Module Defenitions!"!!"""""""""""""""""""""""""""""""""""""""""""""""""!"
Clear#a$; Clear#v$; Clear#d$; Clear#el$; Clear#x$;
!! The following module takes in a vertex and its evolved counter"
part and returns all the triangular bones hanging at this
edge. The output is a list called t. For example when this
module is called with %1,6&, the following list is produced:
t#%%1,2,6&,%1,3,6&,%1,4,6&,%1,5,6&& !"

Bones#vertices$$ :# !Module#%x, i, j&, g#x$$ :# 0; t # Array#g, vertices##2$$ " 2$; j # 1;
For#i # 1, i % vertices##2$$ " 1, &&i,
If#MemberQ#vertices, i$, &&i$; t##j$$ # Sort#Insert#vertices, i, 1$$; &&j$$"

!! The following module takes in a list of triangular bones,
in particular the list produced by BONES and returns a list with
the same number of components. For example, the first component of TE,
TE##1$$, is the list of all tetrahdra having #126$ as a face. Thus,
TE##1$$#%%1,2,3,6&,%1,2,4,6&,%1,2,5,6&&. ''Count'' is the step of calculation we
are at. Its value is either 1 or 2 because in the particular approach used,

after 2 steps !corresponding to the evolution of two vertices" the problem
becomes identical to what we had two steps before, i.e. we have a hypersurface
two vertices of which must be evolved to produce the next hypersurface. !"
TE#t$, count$$ :# !Module#%i, j, k, x, y&, f#x$, y$$ :# 0;

te # Array#f, %Length#t$, count & 2&$;
For#i # 1, i % Length#t$, &&i, j # 1; For#k # 1, k % count & 2, &&k,

While#MemberQ#t##i$$, j$, &&j$; te##i, k$$ # Sort#Insert#t##i$$, j, 1$$; &&j$$$"
!!The following module is called with the output of the previous module,
takes each component of TE,
and returns all the substets of that component with two members. For example L##1$$#%%%1,2,3,6&,%1,2,4,6&&,%%1,2,3,6&,%1,2,5,6&&, %%1,2,4,6&,%1,2,5,6&&&. This output is
essential in calculating the Dihedral angle between any two tetrahedral faces.!"

Lte#w$$ :# !Module#%i, r&, g#r$$ # 0; L # Array#g, Length#w$$;
For#i # 1, i % Length#w$, &&i, L##i$$ # Subsets#w##i$$, %2&$$$"

!!The following module returns the normal to each tetrahedral face,
the dihedral angle between which is sought. It then
produces their dot product. More Description in Hartle's Paper.!"
DotOmega#t$, L$, el$, count$$ :#!Module#%ii, jj, k, l, i, j, s, m, x, y&, g#x$$ :# 0; f#x$, y$$ :# 0;

Dotomega # Array#f, %3, 3&$;
dotomega # Array#f, %Length#t$, Length#L##1$$$&$;
e#k$, l$$ :# !1'2"'!el##count, k$$ & el##count, l$$ " el##k, l$$";
For#s # 1, s % Length#t$, &&s, For#ii # 1, ii % Length#L##s$$$, &&ii, LL # L##s, ii$$;

w1 # Complement#LL##1$$, %count&$;
w2 # Complement#LL##2$$, %count&$;
mm # Intersection#w1, w2$;
w1 # Append#mm, Complement#w1, mm$##1$$$;
w2 # Append#mm, Complement#w2, mm$##1$$$;
For#j # 1, j % Length#w1$, &&j,
For#k # 1, k % Length#w2$, &&k, Dotomega##j, k$$ # e#w1##j$$, w2##k$$$$$;
dotomega##s, ii$$ # !1'!!3("^2""'Det#Dotomega$$$$;"
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!!The following module produces the volumes of the two terahedra the
dihedral angle between which is sought. It then produces their product!"
Volume#t", L", el", count"$ :# !Module#%ii, jj, k, l, i, j, s, m, x, y&, g#x"$ :# 0; f#x", y"$ :# 0;

volumematrix1 # Array#f, %3, 3&$;
volumematrix2 # Array#f, %3, 3&$;
volume # Array#f, %Length#t$, Length#L##1$$$&$;
e#k", l"$ :# !1'2"$!el##count, k$$ % el##count, l$$ & el##k, l$$";
For#s # 1, s ' Length#t$, %%s, For#ii # 1, ii ' Length#L##s$$$, %%ii, LL # L##s, ii$$;

w1 # Complement#LL##1$$, %count&$;
w2 # Complement#LL##2$$, %count&$;
For#j # 1, j ' Length#w1$, %%j,
For#k # 1, k ' Length#w2$, %%k, volumematrix1##j, k$$ # e#w1##j$$, w1##k$$$;
volumematrix2##j, k$$ # e#w2##j$$, w2##k$$$$$;

volume##s, ii$$ #!1'!!3("^2""$Sqrt#Det#volumematrix1$$!Sqrt#Det#volumematrix2$$$$$;"
!!The following module performs two jobs. It first produces the
angle facing the edge with respect to which the action is varied. It then
produces the coefficient of the deficit angle in Regge's Equation, namely,
the expression for the variation of the area of the bone with respect to the edge.!"
SSTAngle#edgelength", t", DE", count"$ :# !Module#%i, j, x, y&, g#x"$ :# 0; f#x", y"$ :# 0;

SSTAngles # Array#g, Length#t$$;
ReggetermT # Array#g, Length#DE$$;
it # Intersection#t##1$$, t##2$$$;
For#i # 1, i ' Length#t$, %%i, m # Complement#t##i$$, %count, count % 5&$##1$$;
SSTAngles##i$$ # ArcCosh#!edgelength##count, m$$ % edgelength##count, count % 5$$ % edgelength##m, count % 5$$"'!2!Sqrt#edgelength##count, m$$$!Sqrt#edgelength##m, count % 5$$$"$$;
For #i # 1, i ' Length#DE$, %%i, ReggetermT##i$$ # !DE##i$$"$!Coth#SSTAngles##i$$$ &

4!!Sqrt#!!edgelength##count % 5, m$$"'!edgelength##count, m$$""$"$!1'Sinh#SSTAngles##i$$$"$!Exp#&2!SSTAngles##i$$$"";
ReggeEquation1 # Sum#0.5!v!ReggetermT##i$$, %i, 1, Length#DE$&$$$"

!!This module produces the Deficit angle on
each of the triangular bones produced by Module BONE!"
Deficit#DI"$ :# !Module#%i, j, x&, g#x"$ :# 0;

DE # Array#g, Length#DI$$;
For#i # 1, i ' Length#DE$, %%i, DE##i$$ # 2!Pi & Sum#DI##i, j$$, %j, 1, Length#DI##i$$$&$$;$"

!!The following are two conversion functions to convert
the triangulation edge length to FLRW radius and vice versa!"
ll#a"$ :# !!12!!Pi^2"!!Sqrt#2$"'5"!!a^3""^!1'3";
aa#l"$ :# !!5!!l^3""'!12!!Pi^2"!Sqrt#2$""^!1'3";
!!This line returns the maximum triangulation
edge length once the maximum is radius is entered!"
ll#4.24413$
13.6814

2  PentatopeUniverse.nb
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!!Block A!"!!A.0.0!"a " 13.6814; v " 0.01;!! ''a'' is the length of triangulation and v is the lapse function!"!!The following command will produce the matrix of edge lengths for the
first step when vertex #1$ is evolved to vertex #6$ in the pentatope model!"!!A.0.1!"el " %%0, a^2, a^2, a^2, a^2, #v^2&, %a^2, 0, a^2, a^2, a^2, d^2&,%a^2, a^2, 0, a^2, a^2, d^2&, %a^2, a^2, a^2, 0, a^2, d^2&,%a^2, a^2, a^2, a^2, 0, d^2&, %#v^2, d^2, d^2, d^2, d^2, 0&&;
Module#%ii, jj, i, j, y, x&, g#y$$ :" 0; f#x$, y$$ " 0; count " 1;!!A.1!"vertices " %count, count % 5&;!!A.2.1!"Bones#vertices$;!!A.2.2!"TE#t, count$;!!A.2.3!"Lte#w " te$;!!A.3.1!"DotOmega#t, L, el, 1$;!!A.3.2!"Volume#t, L, el, 1$;!!The cosine of the dihedral angle between
any two tetrahedra is found by dividing dotomega by volume!"!!A.3.3!"DI " ArcCos#dotomega'volume$;!!A.3.4!"Deficit#DI$;!!A.4!"SSTAngle#el, t, DE, 1$;$

!! Block B !"!!B.1!"Plot#ReggeEquation1% 70.87807553505367,%d, 5, 15&, AxesOrigin & %0, 0&, PlotRange & All$
2 4 6 8 10 12 14

!1500

!1000

!500

!!B.2!"
FindRoot#ReggeEquation1% 70.87807553505367, %d, a # 0.0105&$
%d & 13.644412588636186`&!!B.3!"
d " 13.644412588636186`;

PentatopeUniverse.nb  3
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!! Block C !"!!The following is the edge length matrix after evolving vertex 2 to 7!"!!C.0!"el " ##0, a^2, a^2, a^2, a^2, #v^2, d^2$,#a^2, 0, a^2, a^2, a^2, d^2, #v^2$, #a^2, a^2, 0, a^2, a^2, d^2, d^2$,#a^2, a^2, a^2, 0, a^2, d^2, d^2$, #a^2, a^2, a^2, a^2, 0, d^2, d^2$,##v^2, d^2, d^2, d^2, d^2, 0, x^2$, #d^2, #v^2, d^2, d^2, d^2, x^2, 0$$;
Module%#ii, jj, i, j, y, x$, g%y$& :" 0; f%x$, y$& " 0; count " 2;!!c.1!"vertices " #count, count % 5$;!!c.2.1!"Bones%vertices&;!!c.2.2!"TE%t, count&;!!c.2.3!"Lte%w " te&;!!c.3.1!"DotOmega%t, L, el, 2&;!!c.3.2!"Volume%t, L, el, 2&;!!c.3.3!"DI " ArcCos%dotomega'volume&;!!c.3.4!"Deficit%DI&;!!c.4!"SSTAngle%el, t, DE, 2&;&

!! Block D !"!!D.1!"Plot%ReggeEquation1% 70.87807553505367, #x, 12, 15$, AxesOrigin & #0, 0$&

2 4 6 8 10 12 14

50

100

150

!!D.2!"FindRoot%ReggeEquation1% 70.87807553505367, #x, a # 0.00002$, MaxIterations & 900&!!x is indeed the length of the triangular edge on the next
hypersurface. As we take the triangulation edges to be all equal,
finding x means finding the length of all the triangulation edges of the next hypersurface!"!x ! 13.657 " 0. #"
!!D.3!"
ReggeEquation1% 70.87807553505367 '. x #' 13.656982593699464`
6.71319$10%8 " 0. #

4  PentatopeUniverse.nb
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