Dynamics of Binary Stars and their Planets

Eric Pfahl (KITP/UCSB)
with Matt Muterspaugh (Berkeley)
Multiplicity in Star Formation May 18, 2007

Planets are Common

- Nearly 10\% of FGK stars have at least one Jovian planet within 10 AU (>200 detected).
- Tip of the iceberg? Saturn? Neptune? Earth?
- We will know much more in the next decade.

Binaries have Planets too

- 20-30\% of stars with planets have a stellar companion (e.g., Raghavan et al. 2006).
- Most orbits have separations >100 AU.
- However, wide systems selected:
$D=10-50 \mathrm{pc}$
separation $<10-50 \mathrm{AU} \Rightarrow \theta \lesssim 1^{\prime \prime}$
\Rightarrow Unresolved

HD I88753

But...

Alas...

- Eggenberger et al. (2007) find no evidence for a planet in HD 188753.
- But same ideas apply.

Influence of the Companion

Truncation Radius
$R_{t} \sim 0.3 a(1-e)^{1.2}$
(Pichardo et al. 2005)

$$
\begin{gathered}
R_{t} \sim I A U \\
\text { in } H D \text { I88753 }
\end{gathered}
$$

Binaries are Hostile to Planets

Tidal truncation inside 'snow line' at I-3 AU. (Hayashi 198I; Sasselov \& Lecar 2000)

Insufficient mass/time within R_{t}.
(Jang-Condell 2007)
Stirring/Heating of the disk.
(Thébault et al. 2004, 2006)

Binaries are Hostile to Planets

- Spiral waves dissipate as thermal energy.
- Gas temperature, particle velocities increase.
- Collapse and coreaccretion less likely.

Even binaries with $a \sim 50 \mathrm{AU}\left(\mathrm{R}_{\mathrm{t}} \sim 10 \mathrm{AU}\right)$ are potentially hostile to giant planet formation.

‘Close’ Binary Defined

Binaries with $a / D<2^{\prime \prime}$ tend to be cut.

$$
\mathrm{D} \sim 20-50 \mathrm{pc} \Rightarrow \text { cut on } \mathrm{a}<40-\mathrm{I} 00 \mathrm{AU} .
$$

We expect that $R_{t}>5-10 \mathrm{AU}$ a requirement.

$$
a / R_{t} \sim 3-4 \Rightarrow \text { problems for } a<20-40 \mathrm{AU} .
$$

Close' Binary \rightarrow Binary a < 50 AU.

‘Close’ Binaries with Planets

(Pfahl \& Muterspaugh 2006)

Object	$a(\mathrm{AU})$	e	M_{1} / M_{2}	$R_{t}(\mathrm{AU})$
HD 188753 $\ldots \ldots$	12.3	0.50	$1.06 / 1.63$	1.3
γ Cephei $\ldots \ldots$	18.5	0.36	$1.59 / 0.34$	3.6
\dagger GJ 86 $\ldots \ldots$.	~ 20	\ldots	$0.7 / 1.0$	~ 5
\ddagger HD 41004 $\ldots \ldots$	~ 20	\ldots	$0.7 / 0.4$	~ 6
HD 196885 \ldots.	~ 25	\ldots	$1.3 / 0.6$	~ 7

* Secondary a binary! (Konacki 2005; but see Eggenberger et al.)
\dagger Secondary a white dwarf. (Mugrauer \& Neuhauser)
\ddagger Secondary orbited by a brown dwarf in the desert. (Zucker et al. 2004)
4 of ~ 3000 stars surveyed
$+$
Selection Effects

A Dynamical Backdoor

Maybe AB was much wider initially.

> Perhaps A initially had a different companion in a wide orbit.

What if A was born single?

All require birth in a cluster!

Dynamical Pathways

The Players

A: Planet Host
B: Binary Companion
C: Catalyst Star

The Plays
$\mathrm{I}: A B+C \rightarrow A B+C$
II: $A C+B \rightarrow A B+C$
III: $A+B C \rightarrow A B+C$

Dynamical Pathways

The Players

A: Planet Host
B: Binary Companion
C: Catalyst Star
The Plays
$\mathrm{I}: A B+C \rightarrow A B+C$
II: $A C+B \rightarrow A B+C$
III: $A+B C \rightarrow A B+C$

Dynamical Pathways

The Players

A: Planet Host
B: Binary Companion
C: Catalyst Star
The Plays
$I: A B+C \rightarrow A B+C$
II: $A C+B \rightarrow A B+C$
III: $A+B C \rightarrow A B+C$

Stellar Birth Clusters

$$
\begin{gathered}
\sim 90 \% \text { of all stars form in clusters } \\
\text { with } 10^{2}-10^{3} \text { members. } \\
\text { (e.g., Lada \& Lada 2003) }
\end{gathered}
$$

Most clusters dissolve in < 100 Myr. (e.g.,Wielen 1985)

Within 100 pc , there are $\sim 10^{5}$ binaries from thousands of clusters.

Star Cluster Basics

Cluster of Stars
(and Gas and Dust)
Mean Properties

Radius containing half of the mass

$$
-r_{h}=
$$

Mean density within r_{h}

- $n_{h}=3 N /\left(8 \pi r_{h}{ }^{3}\right)-$
$M_{c} \sim 3 N\langle m\rangle$

Star Cluster Basics

Cluster of Stars
(and Gas and Dust)

Embedded Phase

$r_{h} \sim(N / 100)^{1 / 2} \mathrm{pc}$
\Downarrow

$$
n_{h} \sim 10(N / 100)^{-1 / 2} \mathrm{pc}^{-3}
$$

$$
\underbrace{\sigma \sim(\mathrm{N} / \mathrm{IO} 0)^{1 / 4} \mathrm{~km} \mathrm{~s}^{-1}}
$$

Lifetimes < 5-10 Myr.
Set by gas/dust expulsion.
Only $\sim 10 \%$ of clusters survive.
$M_{c} \sim 3 N\langle m\rangle$

Star Cluster Basics

Cluster of Stars
(and Gas and Dust)

Open Clusters

$$
\begin{gathered}
r_{h} \sim 1 p c \\
\Downarrow
\end{gathered}
$$

$$
n_{h} \sim 10(N / 100) \mathrm{pc}^{-3}
$$

$$
\sigma \sim(\mathrm{N} / \mathrm{IOO})^{1 / 2} \mathrm{~km} \mathrm{~s}^{-1}
$$

Lifetimes set by dynamics.
$\mathrm{t}_{\text {rel }} \sim\left(\mathrm{rh}^{3} / \mathrm{GM} \mathrm{c}_{\mathrm{c}}^{1 / 2}(0.1 \mathrm{~N} / \mathrm{ln} \mathrm{N})\right.$
\sim few (N/I00) ${ }^{1 / 2} \mathrm{Myr}$
N drops with
$\mathrm{T}_{1 / 2} \sim 100(\mathrm{~N} / \mathrm{IOO})^{1 / 2} \mathrm{Myr}$

Star Cluster Basics

Cluster of Stars
(and Gas and Dust)
All Clusters

$M_{c} \sim 3 N\langle m\rangle$

Scattering Dynamics

Cross Section: $\Sigma \sim \pi\left[a^{2}+2 a G M_{123} / u^{2}\right] \quad(u \sim \sigma)$

For close binaries: $G M_{12} /\left[a \sigma^{2}\right] \gg$ I

$$
\Rightarrow \Sigma \sim 2 \pi a \mathrm{GM}_{123} / \sigma^{2}
$$

(Approximate exchange cross section.)

Scattering Statistics

Rate per binary: $f_{p} n_{s}\langle\Sigma \sigma\rangle$ (average over singles)

Number per cluster: $\int d t \int d V n_{b} f_{p} n_{s}\langle\langle\Sigma \sigma\rangle\rangle$ (average over singles and close binaries)

$$
\sim 0.003(\mathrm{~N} / \mathrm{I} 00)^{2}
$$

Sum over clusters:

$$
F_{\text {cbp }}(\text { theory }) \sim 0.00
$$

Result

$\mathrm{F}_{\text {cbp(}}$ (theory) ~0.I $\mathrm{F}_{\text {cbp }}$ (obs)

Maybe nature knows how to make giant planets in close binaries.

What's Next?

- More observations.
(Konacki; Eggenberger et al.; Lane, Muterspaugh, et al.)
- Census of stellar birth clusters.
(Taurus or Orion?)
- Better calibration of dynamics. (few-body; full N -body models)

