Dynamics of Binary Stars and their Planets

Eric Pfahl (KITP/UCSB)

with Matt Muterspaugh (Berkeley)

Multiplicity in Star Formation May 18, 2007

Planets are Common

- Nearly 10% of FGK stars have at least one Jovian planet within 10 AU (>200 detected).
- Tip of the iceberg? Saturn? Neptune? Earth?
- We will know much more in the next decade.

Binaries have Planets too

- 20-30% of stars with planets have a stellar companion (e.g., Raghavan et al. 2006).
- Most orbits have separations >100 AU.
- However, wide systems selected:

 $\begin{array}{l} \mathsf{D} = 10\text{--}50\,\mathsf{pc}\\ \text{separation} < 10\text{--}50\,\mathsf{AU} \Rightarrow \theta \lesssim 1^{\prime\prime}\\ \Rightarrow \mathsf{Unresolved} \end{array}$

HD 188753

Alas...

• Eggenberger et al. (2007) find no evidence for a planet in HD 188753.

• But same ideas apply.

Influence of the Companion

Binaries are Hostile to Planets

Tidal truncation inside 'snow line' at I-3 AU.

(Hayashi 1981; Sasselov & Lecar 2000)

Insufficient mass/time within R_t.

(Jang-Condell 2007)

Stirring/Heating of the disk.

(Thébault et al. 2004, 2006)

Binaries are Hostile to Planets

- Spiral waves dissipate as thermal energy.
- Gas temperature, particle velocities increase.
- Collapse and coreaccretion less likely.

Even binaries with $a \sim 50 \text{ AU} (R_t \sim 10 \text{ AU})$ are potentially hostile to giant planet formation.

'Close' Binary Defined

Binaries with a/D < 2'' tend to be cut.

 $D \sim 20-50 \text{ pc} \Rightarrow \text{cut on a} < 40-100 \text{ AU.}$

$$a/R_t \sim 3-4 \Rightarrow$$
 problems for $a < 20-40$ AU.

'Close' Binaries with Planets

(Pfahl & Muterspaugh 2006)

	Object	$a(\mathrm{AU})$	e	M_{1}/M_{2}	$R_t(\mathrm{AU})$
*	HD 188753	12.3	0.50	1.06/1.63	1.3
	γ Cephei	18.5	0.36	1.59/0.34	3.6
†	GJ 86	~ 20	• • •	0.7/1.0	~ 5
‡	HD 41004	~ 20	• • •	0.7/0.4	~ 6
	HD 196885	$\sim \! 25$	• • •	1.3/0.6	${\sim}7$

* Secondary a binary! (Konacki 2005; but see Eggenberger et al.)

[†]Secondary a white dwarf. (Mugrauer & Neuhauser)

[‡]Secondary orbited by a brown dwarf in the desert. (Zucker et al. 2004)

A Dynamical Backdoor

Maybe AB was much wider initially.

Perhaps A initially had a different companion in a wide orbit.

What if A was born single?

All require birth in a cluster!

Dynamical Pathways

Dynamical Pathways

The Players

A: Planet Host

B: Binary Companion

C: Catalyst Star

The Plays I:AB+C \rightarrow AB+C II:AC+B \rightarrow AB+C III:A+BC \rightarrow AB+C

Dynamical Pathways

The Players

A: Planet Host

B: Binary Companion

C: Catalyst Star

The Plays I:AB+C \rightarrow AB+C II:AC+B \rightarrow AB+C III:A+BC \rightarrow AB+C

Stellar Birth Clusters

~90% of all stars form in clusters with 10²-10³ members.

(e.g., Lada & Lada 2003)

Most clusters dissolve in <100 Myr. (e.g.,Wielen 1985)

Within 100 pc, there are ~10⁵ binaries from thousands of clusters.

Star Cluster Basics

Cluster of Stars (and Gas and Dust)

Mean Properties

Star Cluster Basics

Cluster of Stars (and Gas and Dust)

M_c ~ 3N(m)

Embedded Phase

 $r_h \sim (N/100)^{1/2} pc$ $\downarrow \downarrow$ $n_h \sim 10(N/100)^{-1/2} pc^{-3}$ $\sigma \sim (N/100)^{1/4} km s^{-1}$

Lifetimes < 5-10 Myr.

Set by gas/dust expulsion.

Only ~10% of clusters survive.

Star Cluster Basics

Cluster of Stars (and Gas and Dust)

Open Clusters

$$r_h \sim 1 \text{ pc}$$

 $\downarrow \downarrow$
 $n_h \sim 10(N/100) \text{ pc}^{-3}$
 $\sigma \sim (N/100)^{1/2} \text{ km s}^{-1}$

Lifetimes set by dynamics. $t_{rel} \sim (r_h^3/GM_c)^{1/2} (0.1N/ln N)$ $\sim few (N/100)^{1/2} Myr$ N drops with $T_{1/2} \sim 100 (N/100)^{1/2} Myr$

Star Cluster Basics

Cluster of Stars (and Gas and Dust)

All Clusters

 $p(N) \propto N^{-2}$

 $p(a) \propto a^{-1}$

 $f_b \sim f_s \sim 0.5$

 $f_{cb} \sim 0.5$

Scattering Dynamics

Cross Section: $\Sigma \sim \pi[a^2 + 2aGM_{123}/u^2]$ (u~ σ)

For close binaries: $GM_{12}/[a\sigma^2] >> 1$

 $\Rightarrow \Sigma \sim 2\pi a G M_{123}/\sigma^2$

(Approximate exchange cross section.)

Scattering Statistics

Rate per binary: $f_p n_s \langle \Sigma \sigma \rangle$ (average over singles)

Number per cluster: $\int dt \int dV n_b f_p n_s \langle \Sigma \sigma \rangle$ (average over singles and close binaries)

~0.003 (N/100)²

Sum over clusters:

(F_{cbp}(theory) ~ 0.001

Result

Maybe nature knows how to make giant planets in close binaries.

What's Next?

More observations.

(Konacki; Eggenberger et al.; Lane, Muterspaugh, et al.)

- Census of stellar birth clusters.
 (Taurus or Orion?)
- Better calibration of dynamics. (few-body; full N-body models)