What causes the low Multiplicity in the Orion Nebula Cluster?

Rainer Köhler (Heidelberg)

17. May 2007

The Problem

The binary frequency in the Orion Nebula Cluster is \sim 2 – 3 times lower than in Taurus-Auriga \sim 1.5 times lower than among solar-type main-sequence stars

Theories

 Bonnell & Kroupa (1998):
 Binaries are destroyed in close encounters with other stars

 Durisen & Sterzik (1994):
 The formation rate of binaries depends on the precollapse cloud conditions (e.g. temperature)

Interaction time as function of radius

Time between interactions: $\tau \propto (n\sigma S)^{-1}$ Stellar density: $n \propto r^{-2}$ Velocity dispersion: $\sigma \approx \text{constant}$ Binary cross section:S = constant

 $\implies au \propto r^2$

With typical numbers, for a 0.5 arcsec binary in Orion: au pprox 1 Myr in the center $au\gtrsim 250$ Myr at $r=1\,{
m pc}$

Observed Fields

Observations in the Periphery of the ONC

- Adaptive Optics observations in K with ADONIS at the 3.6 m Telescope on La Silla and NIRC2 at the Keck Telescope on Mauna Kea
- select stars from Jones & Walker (1988)
 - brighter than I = 12.5 mag
 - at radii 5 15 arcmin (0.7 2 pc) from center
 - \Rightarrow 52 Fields

(11 observed with Keck, the rest with ADONIS)

Example: Field around JW0971

The Sample

- 52 fields containing some 230 stars
- + 134 stars in the core region (Petr 1998)
- Binaries with
 - separation > 0''.13 = 60 AU (diffraction limit)
 - separation < 1''.12 = 500 AU (chance alignment)

Corrections

subtract chance alignments
 (= area × surface density)

(in)completeness

Masses

- 166 stars in Hillenbrand (1997) (masses from spectroscopy and photometry)
- 145 mass estimates from IR-photometry

Results

Mass range	Systems	Binaries	Fraction
$<$ 0.1 M_{\odot}	33	0	$0\pm0\%$
$0.1-2~M_{\odot}$	227	11	$4\pm2\%$
$>$ 2 M $_{\odot}$	48	9	$17\pm6\%$

Binary Stars in the Orion Nebula Cluster

Conclusion so far:

This is not the effect we are looking for!

Köhler et al., A&A 458, 461 (2006)

(from Sterzik & Durisen 2003, A&A 400, 1031)

Low-Mass Stars ($0.1 - 2 M_{\odot}$)

- \odot Orion 3.4 \pm 1.5 %
- Taurus-Auriga $14 \pm 3\%$ (Köhler & Leinert 98)
- Main-sequence stars
 - solar-type $9 \pm 2\%$ (Duqennoy & Mayor 91)M-dwarfs $3 \pm 2\%$ (Reid & Gizis 97)

companion star frequency corrected for chance alignments and completeness

Mass Distribution of the Orion Sample

Mass Distribution of the Orion Sample

Low- and Lower-Mass Stars

- Orion
 - $0.45 < M \leq 2$ $8\pm3\,\%$ (79 systems, 6 bin.)
 - $0.1 < M \leq 0.45$ $5\pm 2\,\%$ (147 systems, 7 bin.)
- Main-sequence stars
 - solar-type $9 \pm 2\%$ (Duqennoy & Mayor 91)
 - M-dwarfs $3 \pm 2\%$ (Reid & Gizis 97)

No corrections!

Conclusions so far

- Multiplicity in Orion is not exceptionally low
 main-sequence stars of comparable mass
 (=> make sure you know what you observe!)
- much lower than in Taurus-Auriga
- not (strongly) dependent on radius

Köhler et al., A&A 458, 461 (2006)

Observations with NACO/VLT

- Adaptive Optics observations in J, H, K
- include cluster center
- 3 nights in December 2004
- 27 fields,
 - \sim 415 stars detected,
 - \sim 131 in 2MASS 21 binaries (16%)

Mass Distribution of the NACO Sample

Low- and Lower-Mass Stars (NACO + Periphery)

Orion

- $0.45 < M \le 2$ 11 ± 3% (100 systems, 11 bin.)
- $0.1 < M \le 0.45$ $4 \pm 2\%$ (131 systems, 5 bin.)
- Main-sequence stars
 - solar-type $9 \pm 2\%$ (Duqennoy & Mayor 91)M-dwarfs $3 \pm 2\%$ (Reid & Gizis 97)

No corrections!

ONC compared to Main Sequence

To Do

- Photometric calibration
- Measure binary separations
- Corrections for completeness & chance alignments
- Study separation distribution
- Dependence on position in cluster?

Conclusions

- Multiplicity in Orion is not exceptionally low
 \approx main-sequence stars of comparable mass
- much lower than in Taurus-Auriga
- not (strongly) dependent on radius