What causes the low Multiplicity in the Orion Nebula Cluster?

Raiñer Köhler
(Heidelberg)
17. May 2007

$10 \quad 30 \quad 1003001000$
Semimajor axis [AU]

The Problem

The binary frequency in the Orion Nebula Cluster is
~2-3 times lower than in Taurus-Auriga
~ 1.5 times lower than among solar-type main-sequence stars

Theories

- Bonnell \& Kroupa (1998):

Binaries are destroyed in close encounters with other stars

- Durisen \& Sterzik (1994):

The formation rate of binaries depends on the precollapse cloud conditions (e.g. temperature)

Interaction time as function of radius

Time between interactions: $\tau \propto(n \sigma S)^{-1}$
Stellar density: $n \propto r^{-2}$
Velocity dispersion: $\sigma \approx$ constant
Binary cross section: $S=$ constant

$$
\Longrightarrow \quad \tau \propto r^{2}
$$

With typical numbers, for a 0.5 arcsec binary in Orion:

$$
\begin{aligned}
& \tau \approx 1 \mathrm{Myr} \text { in the center } \\
& \tau \gtrsim 250 \mathrm{Myr} \text { at } r=1 \mathrm{pc}
\end{aligned}
$$

Observed Fields

Observations in the Periphery of the ONC

- Adaptive Optics observations in K
with ADONIS at the 3.6 m Telescope on La Silla and NIRC2 at the Keck Telescope on Mauna Kea
- select stars from Jones \& Walker (1988)
- brighter than $I=12.5 \mathrm{mag}$
- at radii $5-15$ arcmin ($0.7-2 \mathrm{pc}$) from center
$\Rightarrow 52$ Fields
(11 observed with Keck, the rest with ADONIS)

Example: Field around JW0971

The Sample

- 52 fields containing some 230 stars
- 134 stars in the core region (Petr 1998)
- Binaries with
- separation >0 0!. $13=60 \mathrm{AU}$ (diffraction limit)
- separation < 1'.12 = 500 AU (chance alignment)

Corrections

- subtract chance alignments
(= area \times surface density)
- (in)completeness

Masses

- 166 stars in Hillenbrand (1997)
(masses from spectroscopy and photometry)
- 145 mass estimates from IR-photometry

Results

Mass range Systems Binaries Fraction

$<0.1 M_{\odot}$	33	0	$0 \pm 0 \%$
$0.1-2 M_{\odot}$	227	11	$4 \pm 2 \%$
$>2 M_{\odot}$	48	9	$17 \pm 6 \%$

Binary Stars in the Orion Nebula Cluster

Conclusion so far:

This is not the effect we are looking for!

Köhler et al., A\&A 458, 461 (2006)

(from Sterzik \& Durisen 2003, A\&A 400, 1031)

Low-Mass Stars (0.1-2 M ${ }_{\circ}$)

- Orion
- Taurus-Auriga 14 ± 3 (Köhler \& Leinert 98)
- Main-sequence stars

solar-type	$9 \pm 2 \%$	(Duqennoy \& Mayor 91)
M-dwarfs	$3 \pm 2 \%$	(Reid \& Gizis 97)

M-dwarfs
$3 \pm 2 \%$
(Reid \& Gizis 97)
companion star frequency corrected for chance alignments and completeness

Mass Distribution of the Orion Sample

Mass Distribution of the Orion Sample

Low- and Lower-Mass Stars

- Orion

$$
\begin{array}{ll}
0.45<M \leq 2 & 8 \pm 3 \%(79 \text { systems, } 6 \text { bin. }) \\
0.1<M \leq 0.45 & 5 \pm 2 \% \text { (147 systems, } 7 \text { bin.) }
\end{array}
$$

- Main-sequence stars
solar-type
$9 \pm 2 \%$ (Duqennoy \& Mayor 91)
M-dwarfs
3 ± 2 \% (Reid \& Gizis 97)

Conclusions so far

- Multiplicity in Orion is not exceptionally low \approx main-sequence stars of comparable mass
(\Longrightarrow make sure you know what you observe!)
- much lower than in Taurus-Auriga
- not (strongly) dependent on radius

Köhler et al., A\&A 458, 461 (2006)

Observations with NACO/VLT

- Adaptive Optics observations in J, H, K
- include cluster center
- 3 nights in December 2004
- 27 fields,
~ 415 stars detected,
~ 131 in 2MASS - 21 binaries (16\%)

Observed Fields

Mass Distribution of the NACO Sample

Low- and Lower-Mass Stars (NACO + Periphery)

- Orion

$0.45<M \leq 2$	$11 \pm 3 \%$ (100 systems, 11 bin.)
$0.1<M \leq 0.45$	$4 \pm 2 \%$ (131 systems, 5 bin.)

- Main-sequence stars

solar-type	$9 \pm 2 \%$ (Duqennoy \& Mayor 91)
M-dwarfs	$3 \pm 2 \%$ (Reid \& Gizis 97)

No corrections!

ONC compared to Main Sequence

To Do

- Photometric calibration
- Measure binary separations
- Corrections for completeness \& chance alignments
- Study separation distribution
- Dependence on position in cluster?

Conclusions

- Multiplicity in Orion is not exceptionally low
\approx main-sequence stars of comparable mass
- much lower than in Taurus-Auriga
- not (strongly) dependent on radius

