Herbig Ae/Be Multiplicity Study

www.ctio.noao.edu/~haebe

Nicole van der Bliek, NOAO CTIO
Bernadette Rodgers, Gemini Observatory
Sandrine Thomas, UCO Lick Observatory
Greg Doppmann, NOAO Tucson
Jerôme Bouvier, University of Grenoble
Special Thanks to our summer students

- Claudia Araya (PIA, 2007)
- Maria José Cordero (PIA, 2006)
- Anne Sweet (REU, 2006)
- Ben Brandvig (REU, 2005)
- Lara Pierpoint (REU, 2003)
Why study Herbig Ae/Be stars?

• Herbig Ae/Be stars (HAEBEs) are intermediate-mass (2-8 solar masses) pre-main sequence stars

• Bridge the gap between low-mass T Tauri’s and high-mass YSOs
 ⇒ star formation as a function of mass

• Studies to date scattered, incomplete
 • Much less than studies of T Tauri stars

• Why not? heterogeneous sample, large distance range for significant sample
Why study their multiplicity?

• Stars do not form in isolation, nor in homogeneous mass environments
 - HAEBE binary frequency comparable to, or greater than, T Tauri frequency

• Constrain star formation models as a function of mass
 - Do high mass stars form like low mass stars?
 - IF there is a break, it occurs in HAEBE class
 - T Tauri binary studies support fragmentation

• Effect of HAEBE stars on their companions
 - “zone of influence” as function of primary mass

 Note: difficult because of large delta-magnitude
Our project

Broaden the sample of multiple HAEBE systems, and investigate their characteristics

- Known Sample: Previous Surveys
- Broaden Sample: AO Imaging
- Verify companionship
- Investigate Companions: NIR Photometry & Spectroscopy, and Mid-IR Imaging
HAEBE Sample

• About 280 stars from Thé et al. 1994, Tables 1-4

• Supplemented with HAEBE stars from literature, e.g. ISO papers

• Spectral types ranging from early B to late F
HAEBE Sample

229 HAEBEs with spectral type assigned
AO Imaging

- GN+NIRI/Altair & VLT+NACO
- Deeper and Closer
 - $dK=2 \ @ 0.1''$
 - $dK=8 \ @ 1''$
- Larger Sample
- Nearly doubled candidate multiples
 35->66
 - $\approx 50\%$ are multiples (>2)

Note: $dK(B_0-K_0) \approx 7$, while $dK(A_0-K_0) \approx 3$
HAEBE Multiplicity surveys

- previous & ours -

<table>
<thead>
<tr>
<th>Survey</th>
<th>N_{tot}</th>
<th>N_{found}</th>
<th>Res.</th>
<th>Sens.</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leinert et al 1997</td>
<td>26</td>
<td>11</td>
<td>~0.1”</td>
<td>~0.1”</td>
<td>Speckle interferometry</td>
</tr>
<tr>
<td>Pirzkal et al 1997</td>
<td>39</td>
<td>9</td>
<td>0.4”</td>
<td>K=10.5</td>
<td>Includes 1/2 of Leinert sample; wide FOV</td>
</tr>
<tr>
<td>Bouvier & Corporon 2001</td>
<td>63</td>
<td>29</td>
<td>~0.1”</td>
<td>dK=6.5</td>
<td>35 in addition to previous; 20 new multiples; small FOV</td>
</tr>
<tr>
<td>This Work</td>
<td>>80</td>
<td>46</td>
<td>0.06”</td>
<td>K~22, dK≤9</td>
<td>Northern sample so far; at least 25 new</td>
</tr>
</tbody>
</table>
Physically bound?

- **Spectral energy distribution**

 ![Spectral energy distribution graph](image)

 Photometry only
 SED unconstraint
 Uncertain IR excess
Physically bound?

- Spectral energy distribution
- Proper motion
 - PM available for 72 stars
 - Altair-NIRI images: 0.056"
 => 5.6 mas/yr for a 10 yr baseline
 - 17 objects with enough pm
 - 6 have ang.sep. and PA in literature

 3 companions candidates are moving together with primary;
 2 are located within error bars;
 1 companion is definitely not moving with HAEBE star
HIP 114995

Position of secondary relative to primary in 1997 & 2006, with the 2006 position as a baseline

pmRA = -18.63 mas/yr
pmDEC = -14.84 mas/yr

* pm (SIMBAD) indicates the position with respect to the primary if they did not have common proper motion
Physically bound?

- Spectral energy distribution
- Proper motion
- Statistical analysis
 - Probability of finding at least one unrelated source at an angular separation θ:
 - Depends on
 - angular separation θ
 - surface density Σ (30')
 - (secondary magnitude)

\[P(\Sigma, \Theta) = 1 - e^{-\pi \Sigma \Theta^2}. \]

80 pairs of stars (45 primaries)
2/3 of companions have a certainty of 95% of being related
P is probability to find at least one unrelated source within θ

P depends on K_2, K-magnitude of secondary star

Open symbols: probability is $> 1\%$

$P < 0.01\%$
$0.01\% < P < 0.1\%$
$0.1\% < P < 1\%$
$1\% < P < 10\%$
$P < 10\%$
Physically bound?

• **Spectral energy distribution**
 - Uncertain circumstellar extinction

• **Proper motion**
 - Multiple observations are needed
 - Only works for stars with fairly large proper motion
 - Not definitive in clusters

• **Probability based on surface density**
 - Applicable to large sample
 - Depends mainly on K magnitude of secondary
 - Not definitive in clusters
 - Fold in surface density, as function of spectral type
Summary of results

AO Imaging

• Combining those results with previous ones, the total number of HAEBE multiple candidates is 66. We nearly doubled the previously known sample. Survey continues...

• About 50% have more than one possible companion, suggesting a binary fraction potentially greater than 1.

• Proper motion study for 6 stars shows that 3 out of 6 stars move together, 1 does not.

• Statistical analysis based on surface density shows that 2/3 of candidates are likely to be companions, with 95% certainty.

• For stars in clusters it is more difficult to say something conclusive, both based on proper motion and on the statistics.
References

• Ours (so far)
 - Thomas et al. (2006, IAUS 240, 124)
 - AAS 2004 (2), 2006 (4), 2007 (3)
 - Bouvier & Corporon (2001, IAUS 200, 155)

• Others
 - Ducourant et al. 2006, A&A 448, 1235

• This research has made use of the SIMBAD database, operated at CDS, Strasbourg, France