Herbig Ae/Be Multiplicity Study

 www.ctio.noao.edu/whaebeNicole van der Bliek, NOAO CTIO
Bernadette Rodgers, Gemini Observatory Sandrine Thomas, UCO Lick Observatory

Greg Doppmann, NOAO Tucson
Jerôme Bouvier, University of Grenoble

Special Thanks
 to our summer students

- Claudia Araya (PIA, 2007)
- Maria José Cordero (PIA, 2006)
- Anne Sweet (REU, 2006)
- Ben Brandvig (REU, 2005)
- Lara Pierpoint (REU, 2003)

Why study Herbig Ae/Be stars?

- Herbig Ae/Be stars (HAEBEs) are intermediate-mass (2-8 solar masses) pre-main sequence stars
- Bridge the gap between low-mass T Tauri's and highmass YSOs
\Rightarrow star formation as a function of mass
- Studies to date scattered, incomplete
- Much less than studies of T Tauri stars
- Why not? heterogeneous sample, large distance range for significant sample

Why study their multiplicity?

- Stars do not form in isolation, nor in homogeneous mass environments
- HAEBE binary frequency comparable to, or greater than, T Tauri frequency
- Constrain star formation models as a function of mass
- Do high mass stars form like low mass stars?
- IF there is a break, it occurs in HAEBE class
- T Tauri binary studies support fragmentation
- Effect of HAEBE stars on their companions
- "zone of influence" as function of primary mass

Note: difficult because of large delta-magnitude

Our project

Broaden the sample of multiple HAEBE systems, and investigate their characteristics

- Known Sample: Previous Surveys
- Broaden Sample: AO Imaging
- Verify companionship
- Investigate Companions: NIR Photometry \& Spectroscopy, and Mid-IR Imaging

HAEBE Sample

- About 280 stars from Thé et al. 1994, Tables 1-4
- Supplemented with HAEBE stars from literature, e.g. ISO papers
- Spectral types ranging from early B to late F

HAEBE Sample

229 HAEBEs with spectral type assigned

AO Imaging

- GN+NIRI/Altair \& VLT+NACO
- Deeper and Closer
- dK=2 @0.1"
- dK=8 @ 1"
- Larger Sample
- Nearly doubled candidate multiples 35->66
- $\approx 50 \%$ are multiples (>2)

Note: $\mathrm{dK}(\mathrm{BO}-\mathrm{KO}) \approx 7$, while $\mathrm{dK}(A O-K O) \approx 3$

HAEBE Multiplicity surveys
 - previous \& ours -

Survey	$N_{\text {tot }}$	$N_{\text {found }}$	Res.	Sens.	Notes
Leinert et al 1997	26	11	$\sim 0.1 "$		Speckle interferometry
Pirzkal et al 1997	39	9	$0.4 "$	$\mathrm{~K}=10.5$	Includes 1/2 of Leinert sample; wide FOV
 Corporon 2001	63	29	$\sim 0.1 "$	dK=6.5	35 in addition to previous; 20 new multiples; small FOV
This Work	>80	46	$0.06 "$	K ~ 22, dK ≤ 9	Northern sample so far; at least 25 new

Physically bound?

- Spectral energy distribution

Photometry only SED unconstraint Uncertain IR excess

Physically bound?

- Spectral energy distribution
- Proper motion
- PM available for 72 stars
- Altair-NIRI images: 0,056"
=> 5,6 mas/yr for a 10 yr baseline
- 17 objects with enough pm
- 6 have ang.sep. and PA in literature

3 companion candidates are moving together with primary:
2 are located within error bars;
1 companion is definitely not moving with HAEBE star

HIP 114995

Position of secondary relative to primary in 1997 \& 2006, with the 2006 position as a baseline

* pm (SIMBAD) indicates the position with respect to the primary if they did not have common proper motion

Physically bound?

- Spectral energy distribution
- Proper motion
- Statistical analysis
- Probability of finding at least one unrelated source at an angular separation θ :
- Depends on
angular separation θ surface density Σ (30')

$$
P(\Sigma, \Theta)=1-\mathrm{e}^{-\pi \Sigma \Theta^{2}}
$$ (secondary magnitude)

80 pairs of stars (45 primaries)
2/3 of companions have a certainty of 95% of being related
P is probability to find at least one unrelated source within θ

P depends on K2, K-magnitude of secondary star Open symbols: probability is $>1 \%$

Physically bound?

- Spectral energy distribution
- Uncertain circumstellar extinction
- Proper motion
- Multiple observations are needed
- Only works for stars with fairly large proper motion
- Not definitive in clusters
- Probability based on surface density
- Applicable to large sample
- Depends mainly on K magnitude of secondary
- Not definitive in clusters
- Fold in surface density, as function of spectral type

Summary of results AO Imaging

- Combining those results with previous ones, the total number of HAEBE multiple candidates is 66 . We nearly doubled the previously known sample. Survey continues...
- About 50% have more than one possible companion, suggesting a binary fraction potentially greater than 1.
- Proper motion study for 6 stars shows that 3 out of 6 stars move together, 1 does not.
- Statistical analysis based on surface density shows that $2 / 3$ of candidates are likely to be companions, with 95% certainty.
- For stars in clusters it is more difficult to say something conclusive, both based on proper motion and on the statistics.

References

- Ours (so far)
- Thomas et al. $(2006$, IAUS 240,124$)$
- AAS 2004 (2), 2006 (4), 2007 (3)
- Bouvier \& Corporon (2001, IAUS 200, 155)
- Others
- Leinert et al, 1997, A\&A 318, 472
- Pirzkal et al, 1997, ApJ 481, 392
- Thé et al. 1994, A\&AS 104, 315
- Ducourant et al. 2006, A\&A 448, 1235
- This research has made use of the SIMBAD database, operated at CDS, Strasbourg, France

