Multiplicity in the earliest phases

Michael Sterzik

w/ Nuria Huelamo, Claudio Melo, Itziar de Gregorio-Monsalvo, Dick Durisen

When is it established? On what spatial scales?

What are the physical processes that shape MF, P, A, q, e ...

Note the observational difficulties and biases

Examples HD 34700

... 3 Myr old c+wTTS hierarchical quadruple

... there are many!

Table 3. Multiple TTSs with SBs having a known orbit. The periods of spectroscopic binary P_{in} (in days) and the angular distances (or periods) of outer components are listed.

Source	P _{in}	d _{out}	Remark
HD155555	1.7	33″	
V1154 Sco	2.4	0.'288	
RW Aur	2.77	0'.12 + 1'.'39	Quad.
RXJ0529.4+0041	3.03	1".3	eclips.
RXJ0541.4-0324	4.98		SB3
RXJ1301.1-7654	13	1".44	
UZ Tau	19.1	0.'368 + 3.'54	Quad.
HD 34700	23.5	5"+10"	Quad.
ROXs 42C	36	0.157	
RXJ0532.1-0732	46.9		SB3
V773	51.1	$0''_{2} + 0''_{2}$	Trap.
Crux-3	58.3	4.6yrs	SB3
ROXs 43A	89.1	6''	
HD98800	262 + 315	08	Quad.
Haro 1-14	591	129	

40 TTS w/ SB orbits
15 triples or higher
higher MF for P<10d
(cp A. Tokovinin's talk)

25% of all SB are
higher order (Mayor &
Mazeh 1987)

More Examples

CB54

Bok globule
multiple outflows
twisted jets
masers / class 0
multiple stellar
sources @ 100 AU

More Examples SSV63

More Examples L1551 IRS5

- prototypical class I source - outflow, jets, HH, envelope, disk - 50 AU binary + cb disk ??

100 AU

34.1

More Examples L1551 IRS5

VLA 7mm
hierarchical
triple
aligned jets
NS: coplanar
NS: low e
3rd disk is
misaligned

fragmentation...

Lim & Takakuwa, 2006

NRAO (Dec 2006) PR: "Smoking Gun" for Multiple Star Formation

Pre-Stellar Cloud Cores

- $M_0 \sim 0.5 5 M_{sol}$
- $dN/dM_0 \sim M_0 \gamma$
- $R_0 \sim M_0$
- T₀ ~ 10 ... 30 K
- $-\rho_0 \sim 10^{-18} \text{ g/cm}^3$
- grav. bound: $\alpha_0 + \beta_0 < 1/2$
- turbulent/magnetic support

Isothermal Homolgous Collapse

- $R_c \sim \beta_0 R_0$ - $M_c \sim M_0$ - $T_{ff} \sim 10^{4...5}$ yrs - rotationally flattened "pseudodisk" - $\rho_c \sim 10^{-13}$ g/cm³ prone to fragmentation ? - $\alpha_0\beta_0$ (e.g. $\alpha_0*\beta_0<0.12$) - initial perturbations - $\beta > \beta_{crit} \sim 0.02$

Fragmentation & 2nd Collapse

R ~ 100's A.U.

Sterzik, Durisen & Zinnecker, 2003

T_{ff} ~ 10 ^{2...3} yrs
ρ ~ 10^{-5...0} g/cm³
"protostars": class 0
non-hierarchical configurations

Fragmentation Scale

 $\alpha_{0} = 5kT_{0}R_{0}/2\mu GM_{0}$ $\beta_{0} = R_{0}^{3}\Omega_{0}^{2}/3GM_{0}$ $fragmentation condition: <math>\beta_{0} > \beta_{crit} \sim 0.02$ $isothermal collapse scale: R_{c} \sim R_{0} * \beta_{0}$

> 130AU (α0/0.5) (β0/0.02) (M0/M) (10K/T0)

a ~ R_C ≈ O(100 A.U.) a ~ M₀ a ~ 1/T₀

Dynamical Evolution

R_{bin} ~ 40 A.U.

T_{dyn} ~ 10 ^{3...4} yrs
chaotic dynamic
system decay
hierarchical configurations
scale: R_{bin} ~ 0.1 * R
broad distributions

Dynamical Evolution: a

Dynamical Evolution: MF ver. M

Sterzik & Durisen, 2003

Dynamical Evolution: Orbit Orientation

Sterzik & Tokovinin, 2002

Close Binary Formation

dynamical decay produces a significant number of perpendicular orbits
some of them likely generate Kozaicycles (eccentricity pumping) and tidal friction (Kiseleva, Eggelton, Mikkola, 1998)
inner orbits shrink, outer orbits

 inner orbits shrink, outer orbits circularize

Conclusions

- primordial multiples are observable
- scales 10-100's A.U.
- embedded SBs likely exist
- hierarchical systems frequent
- fragmentation after isothermal collapse
- gravitational few-body dynamics
- quantitative distribution functions