Multiplicity in the earliest phases

Michael Sterzik
w/ Nuria Huelamo, Claudio Melo, Itziar de Gregorio-Monsalvo, Dick Durisen

- When is it established?

- On what spatial scales?

What are the physical processes that shape MF, P, A, q, e ...

Note the observational difficulties and biases

Examples

HD 34700

... 3 Myr old $c+w T T S$ hierarchical quadruple

there are many!

Table 3. Multiple TTSs with SBs having a known orbit. The periods of spectroscopic binary $P_{\text {in }}$ (in days) and the angular distances (or periods) of outer components are listed.

Source	$\mathrm{P}_{\text {in }}$	$\mathrm{d}_{\text {out }}$	Remark
HD155555	1.7	$33^{\prime \prime}$	
V1154 Sco	2.4	$0^{\prime} 288$	
RW Aur	2.77	$0^{\prime} 12+1^{\prime \prime} 39$	Quad.
RXJ0529.4+0041	3.03	$1^{\prime \prime} 3$	eclips.
RXJ0541.4-0324	4.98		SB3
RXJ1301.1-7654	13	$1^{\prime \prime} 44$	
UZ Tau	19.1	$0^{\prime \prime} 368+3^{\prime \prime} 54$	Quad.
HD 34700	23.5	$5^{\prime \prime}+10^{\prime \prime}$	Quad.
ROXs 42C	36	$0^{\prime} 157$	
RXJ0532.1-0732	46.9		SB3
V773	51.1	$0^{\prime \prime} 2+0^{\prime \prime} 2$	Trap.
Crux-3	58.3	$4.6 y r s$	SB3
ROXs 43A	89.1	$6^{\prime \prime}$	
HD98800	$262+315$	$0^{\prime \prime} 8$	Quad.
Haro 1-14	591	$12^{\prime \prime} 9$	

- 25% of all SB are higher order (Mayor \& Mazeh 1987)

More Examples

CB54

- Bok globule - multiple outflows
 - twisted jets
 - masers / class 0
 - multiple stellar sources @ 100 AU

Ciardi \& GomezMartin, 2007 MIR emission

More Examples

SSV63

More Examples

- outflow, jets, HH, envelope, disk
- 50 AU binary + cb disk ??

More Examples

L1551 IRS5

NRAO (Dec 2006) PR: "Smoking Gun" for Multiple Star Formation

Pre-Stellar Cloud Cores

$$
R_{0} \sim 0.01 \ldots 0.1 \mathrm{pc}
$$

$-\mathrm{M}_{0} \sim 0.5-5 \mathrm{M}_{\text {sol }}$
$-\mathrm{dN} / \mathrm{dM}_{0} \sim \mathrm{M}_{0}{ }^{-\gamma}$

- R_{0} ~ M_{0}
- T_{0} ~ $10 \ldots 30 \mathrm{~K}$
- $\rho_{0} \sim 10^{-18} \mathrm{~g} / \mathrm{cm}^{3}$
- grav. bound: $\alpha_{0}+\beta_{0}<1 / 2$
- turbulent/magnetic support

Isothermal Homolgous Collapse

Fragmentation \& 2nd Collapse

- Tff $\sim 10^{2 \ldots 3} \mathrm{yrs}$
$-\rho \sim 10^{-5 \ldots 0} \mathrm{~g} / \mathrm{cm}^{3}$
- "protostars": class 0
- non-hierarchical configurations

Fragmentation Scale

$\alpha_{0}=5 k T_{0} R_{0} / 2 \mu G M_{0}$
$\beta_{0}=R_{0}^{3} \Omega_{0}^{2} / 3 G M_{0}$
fragmentation condition: $\beta_{0}>\beta_{\text {crit }} \sim 0.02$ isothermal collapse scale: $R_{c} \sim R_{0}$ * β_{0}

Dynamical Evolution

- $\mathrm{Tdyn} \sim 10^{3 \ldots 4} \mathrm{yrs}$
- chaotic dynamic
- system decay
- hierarchical configurations
- scale: $R_{\text {bin }} \sim 0.1$ *R
- broad distributions

$$
\mathrm{R}_{\mathrm{bin}} \sim 40 \mathrm{~A} . \mathrm{U} .
$$

Dynamical Evolution: a

Dynamical Evolution: MF ver. M

Dynamical Decay Prediciton

Dynamical Evolution: Orbit Orientation

Close Binary Formation

- dynamical decay produces a significant number of perpendicular orbits
- some of them likely generate Kozaicycles (eccentricity pumping) and tidal friction (Kiseleva, Eggelton, Mikkola, 1998)
- inner orbits shrink, outer orbits circularize

Conclusions

- primordial multiples are observable
- scales 10-100's A.U.
- embedded SBs likely exist
- hierarchical systems frequent
- fragmentation after isothermal collapse
- gravitational few-body dynamics
- quantitative distribution functions

