Binary Properties from Hydrodynamical

 Simulations of Star Cluster FormationMatthew Bate

Typical molecular cloud Jeans mass I Mo, Opacity limit $3 \mathrm{M}, \mathrm{P}(\mathrm{k}) \mathrm{ck}^{-4}$ C8izithids Facility

Denser cloud Jeans mass I/3 Mo

Lower metallicity cloud
Opacity limit $9 \mathrm{M}_{\mathrm{J}}$

Large-scale `turbulence'
$P(k) \propto k^{-6}$

Real Star Cluster Formation

- Just finished a calculation 10 times more massive than Bate, Bonnell \& Bromm 2003, Bate \& Bonnell 2005, Bate 2005
- 500 Mo cloud, using $35,000,000$ SPH particles
- Resolves opacity limit for fragmentation
- Follows:
- Binaries to I AU and discs to ~ 10 AU radius
- All binaries (0.02 AU) and discs to $\sim \mathrm{I}$ AU radius
- Aims:
- Model IMF from minimum mass brown dwarf to ~10 M \bigcirc, but still follow binaries, discs, etc
- Improve statistics: > 1000 objects
- Binaries and multiple systems (e.g. binary brown dwarf statistics, separations, mass ratios)
- Examine properties as a function of stellar mass (binarity, discs)

Stellar Mass Distribution antut bave

Stellar Mass Distribution

- Statistics much improved over earlier calculations: 1254 objects at $\mathrm{I} .50 \mathrm{t}_{\mathrm{ff}}$
- Binaries: 146 Triples: 40 Quadruples: 25 Quintuples: 20
- More brown dwarfs than typical star-forming region
- Lack of radiative feedback may result in too much small-scale fragmentation
- Sink particle approximation may over produce ejected objects (interactions not dissipative)

Binarity as a Function of Primary Mass

－Figure from Hubber \＆Whitworth（2005）
－Observations：Martin et al．2000；Fisher \＆Marcy I992；Duquennoy \＆Mayor I99I； Shatsky \＆Tokovinin 2002
－New large cluster calculation： \mathbf{X}

Testing Models through Binarity

- Binarity as a function of primary mass
- Distributions of separation and mass ratios
- Binary brown dwarfs
- Frequency:
- ~15\% from AO surveys (e.g. Siegler et al. 2003);
- <20-25\% (Basri \& Reiners 2006)
- Close separations (http://paperclip.as.arizona.edu/~nsiegler/VLM_binaries/)

Log Separation (AU)

Binary Frequency

- Many stars currently members of multiple systems: 405 stars
- Binary stars: 70
- Single stars: 228
- Star + Brown dwarf binaries: 37
- Frequency of binary stars : 70/335=21\%
- Brown dwarfs andVLM stars (mass < 0.09 M॰): 849 BDs
- Binary brown dwarfs/VLM stars: 39 (5 actually triple BDs)
- Brown dwarf + Star binaries: 37
- Single brown dwarfs: 734
- Frequency of binary brown dwarfs/VLM stars: 39/723=5.4\%

Binary Brown Dwarf Frequency

- Frequency of binary brown dwarfs/VLM stars: 39/723=5.4\%
- But many brown dwarfs have masses < 0.03 Mo
- Would not have been observed in surveys for binarity
- Take only primaries with masses 0.03 to 0.09 Mo
- Binary brown dwarfs/VLM stars: 30
- Single brown dwarfs: 26I
- Frequency of binary brown dwarfs/VLM stars: 30/29|=|0.3\%
- Take mass ratio $\mathrm{q}>0.4$
- Binary brown dwarfs/VLM stars: 23
- Single brown dwarfs: 268
- Frequency of binary brown dwarfs/VLM stars: 23/29I=7.9\%

Star/Brown Dwarf Separation Distributions

- Stars: binary \& triple separations

Brown dwarfs: binaries \& triples

Star/Brown Dwarf Binary Mass Ratio Distributions

- Stars: binary mass ratios
53% have $q>0.6$

Brown dwarfs: binary mass ratios 82% have $q>0.6$

Stellar Binary/Triple Mass Ratio Distributions

- Primaries with $M<0.5 M_{\odot}$
- Flat: Reasonable agreement with FM92

Primaries with $M>0.5 M_{\odot}$
Not enough low-q systems, c.f. DM9 I

Gravity Softening/Accretion Radii

- Re-ran part of the calculation
- No gravitational softening between stars (merge when pass within 0.02 AU)
- Accretion radii reduced by order of magnitude to 0.5 AU
- Formed 236 objects at I. 03 tff compared to 208 at same time with larger accretion radii/softening

Star／Brown Dwarf Separation Distributions（High Resol．）
－Stars：binary \＆triple separations

Brown dwarfs：binaries \＆triples

Binary Brown Dwarf Frequency

－Frequency of binary brown dwarfs／VLM stars：$|3 /|24=1| \%$（vs 8\％）
－Take only primaries with masses 0.03 to 0.09 Mo
－Binary brown dwarfs／VLM stars：II
－Single brown dwarfs： 41
－Frequency of binary brown dwarfs／VLM stars：II／54＝20\％（vs I｜\％）
－Take mass ratio $\mathrm{q}>0.4$
－Binary brown dwarfs／VLM stars： 7
－Single brown dwarfs： 45
－Frequency of binary brown dwarfs／VLM stars：7／54＝I3\％（vs 6\％）

Wide VLM Binaries

- Observers have been finding a few wide binary brown dwarfs
- e.g. Luhman 2004; Billeres et al. 2005; Close et al. 2006; Jayawardhana \& Ivanov 2006; Caballero 2007
- Up to 5100 AU (Artigau et al. 2007)
- Allen et al. (2007) find frequency between 40-I000 AU < 2.3\% from survey of I32 M7-L8
- May be higher fraction in star-forming regions than field (Konopacky et al. 2007)
- Some claim this is evidence against ejection
- But hydrodynamical simulations form wide systems
- Bate \& Bonnell (2005) produced two wideVLM systems: 66 AU, I26 AU
- New calculation forms $6 / 39$ with separations $>100 \mathrm{AU}$
- Separations 40-I 000 AU with masses > 0.03 Mo: $4+4$ triples: Frequency: 2.7\%
- Widest system is 8400 AU

Brown Dwarfs in Triple Systems

- Similarly, there are several VLM triple systems known
- GL569B is a triple consisting of three $\sim 0.04 \mathrm{M}$ brown dwarfs (Simon et al. 2007)
- Binary brown dwarf companions to stars
- GJ569B; HDI30948B, Epsilon Indi B, GJI00IB, GI4I7B,LP2I3-67, etc
- See Siegler's VLM object archive and references therein
- New calculation
- 5 triple brown dwarfs (tertiary separations ranging from 86 to I02I AU)
- Only one BBD companion to a star (6I AU star-BBD separation)
- I5 single BD companions to stellar binaries
- Of the 37 star-BD binaries, 5 have BD tertiary, I has stellar tertiary

Conclusions: Hydrodynamical Simulations

- New large-scale calculation provides statistics better than observations
- IMF similar to observed IMF
- Very small uncertainties - high-mass end: Salpeter-type slope; turnover at low-masses
- Somewhat too many brown dwarfs
- Likely due to incorrect thermodynamics (radiative transfer) [or magnetic fields?]
- Binarity in good agreement with observations
- Binarity is an increasing function of primary mass
- Frequency of binary brown dwarfs compatible with observations $\sim 20 \%$ for highresolution version of simulation
- Naturally produce a small fraction of wide binary brown dwarfs (agrees with observ.)
- Even able to produce some triple brown dwarfs
- Separation distributions of binary stars and brown dwarfs plausible
- This work was conducted as part of the EURYI scheme award. See www.esf.org/euryi
- It was also partially funded by a 2003 Philip Leverhulme Prize
- The calculations were performed on the UK Astrophysical Fluids Facility (UKAFF)

