PUBLICATIONS OF THE DAVID DUNLAP OBSERVATORY UNIVERSITY OF TORONTO

VOLUME II

NUMBER 13

DISTANCES OF 97 OB STARS

BY HARRY H. GUETTER

1964 Toronto, canada

PRINTED AT THE UNIVERSITY OF TORONTO PRESS

DISTANCES OF 97 OB STARS

By HARRY H. GUETTER*

Abstract

Equivalent widths of the H_{γ} line are determined for 97 stars of spectral range B3 and earlier which have been observed spectroscopically at the David Dunlap Observatory. All the equivalent widths were reduced to the system of the Dominion Astrophysical Observatory, Victoria, B.C. The distances of these stars were obtained by the use of the H_{γ} -M_V calibration determined by Johnson and Iriarte (1958) and the assumption that the ratio of total to selective absorption is 3.0.

The distances of various association members are compared to one another, and it is concluded that the luminosity calibration may be incorrect for very bright stars.

Finally, the effect of duplicity among OB stars on the $H\gamma$ -M_V calibration is briefly examined.

INTRODUCTION

The basis of this study is the correlation between the equivalent width of the $H\gamma$ line of an early-type stellar spectrum and the star's absolute magnitude, to which attention has been directed by Petrie (1953). This relation has been recalibrated by Johnson and Iriarte (1958) with cluster stars whose luminosities have been determined by zero-age main sequence fits. By a combination of this estimate of absolute magnitude with the apparent magnitude and colour of the star, the distance of the star can be computed.

Observational Data

Stars of spectral type no later than B3 and fainter than apparent magnitude 6.0 were considered in this investigation. With these criteria 97 stars were selected from spectrograms already available in the plate files of the David Dunlap Observatory. Upwards to eight usable spectrograms were available for each star.

The spectrograms had all been obtained on Eastman 103aO emulsion with the one-prism spectrograph of the 74-inch telescope at the David Dunlap Observatory. The spectrograph has two cameras giving dispersions at H γ of 33 A./mm. and 66 A./mm. respectively. The former was used for many stars brighter than $m_{pg} = 7.0$, while the latter was used to obtain fainter spectra. The slit width was chosen between 0.02 mm. and 0.04 mm., depending on the brightness of the star and the seeing and transparency during the time of observation.

*Now at the U.S. Naval Observatory, Flagstaff, Arizona.

CALIBRATION AND ERROR DETERMINATION

The measurement of the spectra was carried out with the Dunlap microphotometer (Oke 1957) with the aid of tube sensitometer calibrations. The sensitometer spots, exposed on each plate beforehand, are used to transform density to intensity. The intensity steps were taken from the work of Armstrong (1933), checked by Wellmann (1957).

The mechanical magnification of the microphotometer was calculated from the iron arc comparison lines to be 45.5.

The spectra usually were traced from $\lambda 4250$ to $\lambda 4450$ centred about $H\gamma$ so that the continuum could be estimated fairly accurately. The mean of density readings taken on the unexposed parts of the plate adjacent to the $H\gamma$ line was considered to be zero intensity since many plates showed uneven fog density.

To obtain the line profile, the best-determined side of the H γ line was drawn, the centre of the profile estimated, and the opposite side of the profile drawn symmetrically to the first. In this way the effects are minimized of other lines which are close to the H γ line, for example OII λ 4349 and λ 4351, and also photographic irregularities.

The plates were given weights from zero to unity to denote the quality of the spectrogram. Similarly, the tracings were also given weights from zero to unity. The two weights were then multiplied to give the final weight for a particular measurement. In case of more than one measurement, the square of the final weight was taken to equal the sum of the squares of the individual weights. The weights of spectra obtained with the 33 A./mm. dispersion were doubled with respect to those of the 66 A./mm. dispersion.

Calibration of the Equivalent Widths

The $H\gamma$ -M_v calibration by Johnson and Iriarte (1958) is based on Victoria equivalent widths. It was therefore necessary to determine the transformation required to convert the Dunlap equivalent widths to the Victoria system. From twenty-one stars in common, it was found for the 33 A./mm. dispersion that

 $H\gamma_{\text{Victoria}} = (1.08 \pm 0.07) H\gamma_{\text{Dunlap}}$

From twenty-five stars in common, it was found for the 66 A./mm. dispersion that

 $H\gamma_{Victoria} = (1.07 \pm 0.08) H\gamma_{Dunlap}$. The individual points are shown in figures 1 and 2.

FIG. 1—Comparison of the H_{γ} equivalent widths from spectra obtained at the David Dunlap Observatory and the Dominion Astrophysical Observatory (Victoria) for the 33 A./mm. dispersion.

FIG. 2—Comparison of the H_{γ} equivalent widths from spectra obtained at the Dunlap Observatory and Victoria for the 66 A./mm. dispersion.

Absolute Magnitudes

The data for the stars which were studied in the present programme are listed in Table I. The designations of the columns are self-explanatory except for the following. Column 8 (Ref.), is the reference to the source of the photometric data: (a) Hiltner (1956), (b) Hiltner and Johnson (1956), (c) Hiltner and Iriarte (1955), (d) Author's observations obtained with the photometer attached to the 19-inch reflector at the David Dunlap Observatory (Marlborough 1964); column 9 (W), is the equivalent width of the H γ line; column 10(Wt.), is the combined weights of the plate-tracing combination; column 11 ($\pm \Delta W$), is the standard error of the equivalent width in units of 0.01 A.

DISTANCES OF VARIOUS ASSOCIATIONS

Some of the stars in the present programme are members of associations. Since most associations are fairly rich in early-type stars, only a few stars in each association were studied spectroscopically.

The information obtained for four associations is given in Table II. First the name of the association and its distance (as determined by other workers) are given. For each association, the individual stars are listed as to: the spectral type; the equivalent width of the H γ line; the total weight given to the spectrum-tracing combination; the number of plates used; the internal dispersion or standard error of the equivalent width in milliangstroms; the distance modulus; and the distance in kiloparsecs.

Table II shows that the four stars of III Cygni agree fairly well with one another, giving an average distance of 1.6 kpc., which is only a little smaller than the distance given by Schmidt (1958). The three stars of III Cephei yield an average distance of 0.85 kpc., corresponding closely to that estimated by Blaauw, Hiltner and Johnson (1959). For the other two associations significant discrepancies are found, in that the computed distances of the three stars with equivalent widths smaller than about 2.0 angstroms are much greater than those with larger equivalent widths. Three possible explanations suggest themselves: (a) that the Johnson and Iriarte calibration is over-luminous for small equivalent widths, (b) that the three discordant stars are not association members, but background stars and (c) that incipient emission at $H\gamma$ in the spectra of these stars has reduced the value of the equivalent widths. It is not possible to choose among these explanations because of the small sampling.

	Dist. (kpc.)	3.60	4.32	0.20	1.72	1.85	1.20	1.69	0.23	0.51	0.88	1.14	2.33	1.15	1.70	2.17	3.19	2.47	1.07	1.28	3.10	1.54	3.75	5.10	
	ΔW (0.01А.)		20	35	10	13	53	36	\$	61	85	35	18	s	20	53	10	16				15			
	Wt.	0.9	1.4	1.8	1.0	0.7	1.1	1.4	1.0	0.9	1.2	1.5	1.1	1.0	0.8	1.2	1.2	1.3	0.7	0.9	0.9	0.8	0.6	0.6	.1961
	W (A.)	2.0	2.3	9.2	2.8	2.0	3.9	3.9	7.9	4.7	5.3	5.1	2.3	2.8	2.0	5.3 7	त. त	6 10 10	2.9	50 100	1.3	4.5	1.8	1.5	p. 510,
	Ref.	a	9	þ	5	8	9	v	р	а	р	р	а	ы	а	q	þ	р	v	a	р	ч	a	u	. part 7.
	U—B	-0.75	-0.51	-0.63	-0.16	-0.36	-0.65	-0.56	-0.51	-0.33	-0.28	-0.38	-0.66	-0.78	-0.69	-1.04	-0.80	-0.67	-0.29	-0.88	-0.66	-0.70	-0.42	-0.39	Obs., vol. 17
	B−√	+0.30	+0.47	-0.05	+0.72	+0.62	+0.23	+0.26	+0.14	+0.35	+0.49	+0.45	+0.32	+0.20	+0.29	-0.19	+0.05	+0.23	+0.59	+0.01	+0.30	+0.30	+0.68	+0.61	U.S. Naval (
	. 1	8.52	9.55	7.50	8.50	7.71	7.37	8.57	7.46	7.03	9.30	9.43	8.04	6.81	6.92	6.44	7.81	7.89	7.17	5.98	6.82	9.44	9.54	9.38	lix of Publ.
	Sp.	B0.5V	B2p1-11	B2V	B31a	B1.51b	B21b	B1II-III	B3V	B3111	B3111	B3111	B0.5IV	09.5111	B011	09V	B0.5111	B0.5111	B3Ia	1160	B0Ib	09.5V	OSIV	BHI	isted in append
	\mathbf{b}^{11}	-0°.2	-0.2	-14.2	+ 1.7	+ 0.9	- 3.9	- 4.4	+ 2.2	-21.3	+ 7.6	+ 7.7	-0.2	+ 0.6	+ 3.9	+2.6	+26.7	+13.1	-0.5	- 1.6	-1.5	+ 0.8	+ 1.3	- 0·+	ourth stars
	111	119°.3	119.3	120.3	122.8	123.7	134.4	135.1	140.2	158.9	143.7	143.7	173.2	172.8	188.5	224.4	9.8	23.6	11.3	10.8	12.7	17.0	18.6	16.7	third and f
B.D.	or H.D.	$+ 61^{\circ} 39$	$+ 61^{\circ} 40$	3261	4694	5551	13841	14302	20134	21483	1502 #3*	1502 #4*	35633	35921	43818	57682	149363	161961	166628	167263	168021	$-13^{\circ} 4930$	168161	168894	*NGC 1502.

TABLE I Data for the OB Stars Distances of 97 OB Stars

409

	ΔW Dist.	0.01A.) (kpc.)	40 2.13	1.5 2.37	41 0.81	4.23	26 3.22	4 4.45	0.83	10 3.25	26 1.31	14 1.28	35 3.03	13 1.25	0.67	0.82	24 2.49	52 0.74	4 1.37	75 0.50	37 0.49	35 1.45	8 1.67	15 1.68	60 1.64	10 1.95	
		Wt. ((0.9	1.2	1.3	0.6	0.7	1.1	0.6	1.0	1.5	1.2	1.3	1.5	0.8	0.7	1.0	1.5	0.9	0.9	1.6	0.8	1.1	0.9	1.0	0 8	
	M	(·V)	2.6	1.4	4.2	2.4	2.3	2.0	4.2	2.6	5.3	2.3	2.6	5.6	4.5	4.5	2.6	5.7	4.0	5.2	5.5	3.1	2.4	2.3	2.5	2.6	2
		Ref.	C	Ч	р	C	q	С	а	a	u	а	а	а	р	a	a	a	u	р	р	n,	13	u	3	C	,
		U—B	-0.34	-0.57	-0.26	-0.66	-0.52	-0.64	-0.45	-0.71	-0.70	-0.29	-0.78	-0.57	-0.86	-0.31	-0.45	-0.62	-0.63	-0.66	-0.42	-0.15	-0.19	-0.06	-0.15	-0.97	1.0
		13 - V	+0.80	+0.45	+0.55	+0.28	+0.51	+0.36	+0.59	+0.20	+0.01	+0.79	+0.20	+0.10	-0.10	+0.63	+0.46	+0.19	+0.34	-0.09	+0.27	+0.80	+0.77	+0.90	+0.87	40.75	
		Λ	9.44	6.82	7.83	9.35	9.31	8.92	8.59	8.50	8.93	7.85	8.77	9.40	6.30	8.94	8.70	8.85	8.60	6.46	7.78	9.38	8.92	8.88	8.92	0,10	DF. P
		Sp.	B0.5Ia	B0.5Ia	B3H	B1V	160	B0.5Ia	08:Vnn	B1Ibp	B2IV	B1Ia	07.5	B2V:n	B0.511	BIIII	B11b	B0.5V	B0III	B2V	B2III	B0II	09.5111	B01b	B1Iab	ROTH	111001
		\mathbf{p}^{1i}	- 1.2	- 4.4	+ 2.8	-2.5	- 3.4	- 2.3	+ 3.4	+ 3.2	+ 2.9	- 0.3	+ 1.7	+ 1.6	+ 7.8	-2.6	+ 0.5	+ 2.0	+ 1.5	+ 5.8	+ 1.4	+ 0.6	+ 0.6	+ 0.6	+ 0.6	+ 3 1	
		111	18.3	14.5	31.0	25.3	24.2	26.9	41.7	64.3	64.2	60.4	64.1	64.8	F.77	64.4	69.4	72.6	72.0	82.8	77.0	76.9	76.9	76.9	76.9	84.5	0.++O
B.D.	or	H.D.	170177	171012	172028	173637	173783	173987	175514	$+28^{\circ}3434$	$+28^{\circ}3438$	186841	$+27^{\circ}3512$	$+28^{\circ}3485$	188439	$+25^{\circ} 4083$	$+31^{\circ}3921$	$+35^{\circ}3956$	227704	193536	193855	229227	229234	229238	229239	$+45^{\circ}3230$	0020 01

TABLE I (continued)

410

Publications of the David Dunlap Observatory

B.D.											
01								M		AW A	l)ist.
H.D.	111	\mathbf{b}^{11}	Sp.	Λ	B-V	U—B	Ref.	(·A.)	Wt.	(0.01A.)	(kpc.)
199140	72.8	-10.5	B2III	6.52	-0.12	-0.80	р	4.7	1.5	83	0.71
$+45^{\circ} 3339$	86.8	+ 0.6	BIIV	9.93	+0.42	-0.42	а	5.2	1.0	27	1.14
201345	78.5	-9.5	B0IV	7.66	-0.13	-0.95	р	3.3	1.2	53	2.14
202349	82.5	- 7.5	B0.5V	7.37	-0.20	-0.95	р	5.2	1.0	29	0.81
239767	99.7	+ 2.7	B0.5V:p	9.25	+0.70	-0.35	a	4.4	0.9	22	0.92
235618	98.7	+ 1.4	BHV	9.66	+0.68	-0.31	а	3.4	1.1	러	1.85
207563	75.4	-25.I	B3V	6.31	-0.10	-0.64	р	6.0	0.9		0.36
235673	98.4	- 1.6	07	9.14	+0.21	-0.77	a	3.0	1.3	26	2.95
209008	65.9	-36.5	B3V	5.97	-0.04	-0.50	р	5.7	0.9		0.33
$+53^{\circ}2790$	100.6	- 1.1	09.5111	9.86	+0.25	-0.71	a	2.8	1.0	15	4.38
210809	99.9	- 3.1	09.5111	7.54	+0.05	-0.89	a	2.1	1.2	x	3.01
$+53^{\circ}2820$	101.3	-1.7	B0IV:n	9.95	+0.10	-0.78	a	3.4	0.7		4.47
$+54^{\circ}2718$	102.0	-0.9	B2III	10.15	+0.19	-0.62	a	4.2	0.6		3.40
$+54^{\circ}2726$	102.2	- 1.0	B111	9.38	+0.33	-0.54	a	3.1	0.9	20	2.98
235783	101.6	- 1.9	B11b	8.68	+0.17	-0.71	a	3.4	1.0	6	2.67
$+53^{\circ}2843$	101.7	+2.2	08	9.50	+0.21	-0.75	ŋ	1.8	0.8	<u>:</u> 1	7.05
$+60^{\circ} 2380$	105.4	+ 3.2	B2HI	9.04	+0.39	-0.50	a	2.9	1.0	. 1 8	2.69
239923	104.4	+ 1.6	B3Ib	8.89	+0.83	-0.12	а	1.7	0.8	26	3.37
235807	102.7	- 1.3	B0.5IVn	9.56	+0.21	-0.67	а	2.7	0.8	~~	4.34
235813	102.3	- 2.0	B0111	8.84	+0.22	-0.74	a	1.8	0.9	C1	5.20
T.B. 5-21†	103.0	- 1.3	05	10.29	+0.27	-0.73	а	2.9	0.4		4.83
235825	102.9	-1.7	$\Lambda 60$	9.28	+0.24	-0.73	ધ	2.2	0.4		4.63
$+54^{\circ}2761$	103.2	- 1.4	05f	9.98	+0.34	-0.68	а	2.3	1.0	11	5.25
$+54^{\circ}2764$	103.0	- 1.6	B11b	9.54	+0.28	-0.62	a	3.1	0.6		3.73
†Boletin de lu	os Observato.	rios Tonantzi	intla y Tacubayo	t, no. 5.							

TABLE I (continued)

Distances of 97 OB Stars

411

B.D.											
or								M		ΔW	Dist.
I-I.1).	11]	p11	Sp.	^	B-V	U—B	Ref.	('V')	Wt.	(0.01Λ)	(kpc.)
$+55^{\circ}2748$	103.7	- 1.0	B0.5V	9.96	+0.44	-0.52	ы	2.9	0.8	21	3.47
$+60^{\circ} 2405$	107.1	+ 3.2	B3nnV	16.6	+0.54	-0.19	я	6.4	0.6		0.69
$+55^{\circ} 2770_{\rm p}$	104.8	- 1.4	BIII	10.10	+0.37	-0.54	а	6.6	0.5		0.75
$+55^{\circ} 2770^{\circ}$	104.8	· -	B1.5111	9.70	+0.35	-0.54	ч	5.2	0.7		1.15
$+55^{\circ}2771$	105.0	- 1.3	B1IV	9.70	+0.48	-0.45	a	3.0	0.7		2.86
214240	101.8	- 7.2	B3V	6.30	-0.06	-0.53	q	5.8	0.8		0.38
214652	96.1	-17.8	B3V	6.81	-0.15	-0.71	р	6.6	1.1	23	0.39
240068	107.3	-0.5	B0III	9.64	+0.49	-0.52	ы	4.4	0.6		1,43
216658	109.7	+ 2.3	BOV	8.89	+0.70	-0.29	а	-1.6	1.5	21	0.66
216711	109.9	+ 2.7	BIV	9.05	+0.62	-0.33	ч	4.7	1.4	13	0.76
218407	104.8	+13.0	B3HV	6.62	-0.02	-0.71	р	5.2	0.9		0.54
218941	0.011	+ 0.1	B1.51I	9.71	+0.83	-0.20	a	1.4	0.4		5.08
$+61^{\circ} 2408$	111.9	+ 1.2	B01112p?	9.7	+0.79	-0.21	а	2.6	0.5		1.1
$+63^{\circ} 1962$	112.8	+ 2.8	BIIII	8.40	+0.32	-0.56	a	4.3	1.5	<u>1</u> 2	1.13
$+63^{\circ}1964$	112.9	+ 3.1	B0H	8.46	+0.71	-0.38	ų	1.5	1.5	13	2.83
$+60^{\circ} 2553$	113.2	+ 0.0 +	B211	10.08	+0.45	-0.43	u	4.1	1.0	73	2.59
T.B. 5–36†	114.9	- 0.3	B0.5IV	9.78	+0.53	-0.45	я	3.6	0.7	17	2.14
$+61^{\circ} 2509$	115.1	+ 0.3	B0.51b	8.42	+0.46	-0.55	а	2.5	1.1	30	2.23
$+60^{\circ} 2615$	115.1	- 0.1	B0.51b	9.10	+0.60	-0.45	ų	1.9	1.1	13	3.63
$+61^{\circ} 2515$	115.4	+ 0.4	B0.5V	9.95	+0.43	-0.51	ų	4.6	0.9	0ŀ	1.60
$+61^{\circ} 2526$	115.5	+ 0.1	B2Ib	8.77	+0.39	-0.50	а	3.4	1.1	5	2.21
$+61^{\circ} 2529$	115.5	+ 0.1	B11b	8.65	+0.53	-0.47	9	2.7	1.2	22	2.11
$+61^{\circ} 2550$	116.1	+ 0.0	B0IV	9.29	+0.33	-0.63	9	2.7	1.1	16	3.16
$+61^{\circ} 2559$	116.3	+ 0.3	$\Lambda 60$	9.72	+0.29	-0.66	15	3.4	1.2	11	3.05
T.B. 5-39†	116.6	- 1.1	B1V	10.22	+0.29	-0.59	а	6.0	0.9	21	1.08
+Boletin de le	os Observata	rios Tonantz	inlla y Tacubaye	a, no. 5.							

TABLE I (continued)

412

TABLE II	ΤA	В	LE	ΙI
----------	----	---	----	----

	Spectral						Distance
Star Number	Туре	W	wt.	n	ΔW	$m_0 - M$	(kpc.)
III Cygni, distance	e = 1.93 kpc. (Schmidt	1958)				
H.D.E. 229227	BOII	3.1	0.8	2	35	10.8	1.45
H.D.E. 229234	O9.5III	2.4	1.1	3	8	11.1	1.67
H.D.E. 229238	B0Ib	2.3	0.9	3	15	11.1	1.68
H.D.E. 229239	B1Iab	2.5	1.0	3	60	11.1	1.64
II CEPHEI, distance	e = 3.9 kpc. (S	Schmidt 1	958)				
H.D.E. 235673	07	3.0	1.3	3	26	12.4	2.95
B.D. +54°2726	BIII	3.1	0.9	3	29	12.4	2.98
H.D.E. 235783	B1Ib	3.4	1.0	3	9	12.1	2.67
B.D. +53°2843	08	1.8	0.8	2	2	14.2	7.05
H.D.E. 235813	BOIII	1.8	0.9	2	2	13.6	5.20
H.D.E. 235825	O9V	2.2	0.4	1		13.3	-4.63
B.D. +54°2764	B1lb	3.1	0.6	1		12.9	3.73
III СЕРНЕІ, distan	ce = 0.725 kpc	c. (Blaauv	v, Hiltne	er, and	d John	son 1959)	
H.D. 216658	B0V	4.6	1.5	5	21	9.1	0.66
H.D. 216711	B1V	4.7	1.4	-1	13	9.4	0.76
B.D. +63°1962	BIIII	4.3	1.5	5	42	10.3	1.13
I CASSIOPEIAE, dis	tance = 2.5 kp	oc. (Morg	an, Code	e and	Whitf	ord 1953)	
B.D. +61°2509	B0.5Ib	2.5	1.1	3	30	11.7	2.23
B.D. +60°2615	B0.5Ib	1.9	1.1	4	13	12.8	3.63
B.D. +61°2526	B2Ib	3.4	1.1	3	2	11.7	2.21
B.D. +61°2529	BIIb	2.7	1.2	3	22	11.6	2.11
B.D. +61°2550	BOIV	2.7	1.1	3	16	12.5	3.16
D.D. LOIDOFFO	0017	9.4	1.0	0	* *	10.4	9.05

Distances of Various Associations by Means of Individual Stellar Distances

Conclusions

The conclusions reached in this paper are only tentative. The derived distances may be incorrect for the following reasons: First, the spectra of some stars may have at $H\gamma$ a little emission which is difficult to distinguish on the tracings from the grain of the photographic emulsion. This would cause the equivalent width to be under-estimated and the distances obtained would be too large. Secondly, there is the fact that according to Blaauw and van Albada (1963) approximately half the stars of the nearest associations are spectroscopic binaries.

Heard (private communication), in a study of five stars in the association III Cephei, found one definite, and three probable spectroscopic binaries. It may be shown that in the present method of determining absolute magnitude, the effect of an unresolved binary is to lead to an absolute magnitude which is intermediate between the absolute magnitudes of the two components. The distance of such a binary is therefore underestimated.

However, due to the high incidence of spectroscopic binaries among OB stars and the relative frequency of line emission, it seems doubtful that the stars used for their calibration by Johnson and Iriarte were all single stars without any $H\gamma$ emission. Hence the $H\gamma$ - M_v relation is probably overluminous where derived from single stars, and underluminous where derived from binaries. Therefore, by assuming that the sample of stars used in this paper is similar to those used by Johnson and Iriarte, one would expect that on the average their calibration is valid for use in this study. This statistical conclusion, however, may be invalid for the most luminous stars because of the small number of such objects.

Acknowledgements

The author would like to express his gratitude to the following persons: to Dr. J. F. Heard for providing the necessary facilities at the David Dunlap Observatory; to Mr. J. M. Marlborough for obtaining some photometric observations; to Dr. A. A. Hoag for several valuable discussions; and especially to Dr. J. D. Fernie for suggesting this problem and for his guidance and advice throughout. This research was supported in part by a grant from the National Research Council, Ottawa.

References

Armstrong, W. S. 1933, M.A. Thesis, University of Toronto.

Blaauw, A., Hiltner, W. A., Johnson, H. L. 1959, Ap. J., vol. 130, p. 69.

Blaauw, A., and Albada, T. S. 1963, Ap. J., vol. 137, p. 791.

- Hiltner, W. A. 1956, Ap. J. Suppl. vol. 2, p. 389.
- Hiltner, W. A., and Iriarte, B. 1955, Ap. J., vol. 122, p. 185.
- Hiltner, W. A., and Johnson, H. L. 1956, Ap. J., vol. 124, p. 367.

Johnson, H. L., and Iriarte, B. 1958, Low. Obs. Bull., vol. 4, p. 47.

Marlborough, J. M. 1964, A. J., vol. 69, p. 215.

Morgan, W. W., Code, A. D. and Whitford, A. E. 1953, Ap. J., vol. 118, p. 318.

Oke, J. B. 1957, R.A.S.C. Journal, vol. 51, p. 133.

Petrie, R. M. 1953, Publ. D.A.O. vol. 9, p. 251.

Schmidt, K. H. 1958, A. N., vol. 284, p. 76.

Wellmann, P. 1957, Ap. J., vol. 126, p. 30.