PUBLICATIONS OF THE DAVID DUNLAP OBSERVATORY UNIVERSITY OF TORONTO

VOLUME I

NUMBER 17

-

LIGHT CURVES OF THE VARIABLE STARS IN THE GLOBULAR CLUSTER NGC 5466

BY

HELEN B. SAWYER

1945 THE UNIVERSITY OF TORONTO PRESS TORONTO, CANADA

PLATE XXXI

The cluster NGC 5466, with variables marked. Enlarged from D.D.O. plate 7857, 1942, June 8, exp. $20^{\rm m}$. Scale, 1 mm = 6".6.

LIGHT CURVES OF THE VARIABLE STARS IN THE GLOBULAR CLUSTER NGC 5466

By Helen B. SAWYER

(with Plate XXXI)

THE globular cluster NGC 5466 is a loose cluster of low absolute magnitude lying in very high galactic latitude. It closely resembles the cluster NGC 5053 which is relatively close to it in the sky. It is well situated for observation from the northern hemisphere, since its R.A. is $14^{h} 03^{m}.2$ and Dec. + $28^{\circ} 56'$ (1950). It has a galactic longitude of 8° , and latitude of $+ 72^{\circ}$.

In 1926 Baade¹ announced the discovery of fourteen variable stars in this cluster. From the similarity of their magnitudes and the general trend of the light changes, he concluded they were all cluster type variables. On the basis of a median magnitude of 16.17 for these variables, he derived the distance of the cluster as 19,000 parsecs. This distance was reduced in 1929² to 17,000 parsecs by the zero point correction for absolute magnitude of Cepheid variables.

The distance of 17,000 parsecs is still accepted in the recent revision by Shapley³ of the distances of clusters in high galactic latitudes. From the survey of nebulae in the field it appears that this cluster lies in a region rich in galaxies, and Shapley has therefore applied no correction for absorption. The colour class determined by Stebbins and Whitford is f8, with a colour excess of + 0.05. Because of its high galactic latitude, therefore, this cluster is actually at the very great distance of 16,000 parsecs above the galactic plane, and is one of the few objects which indicates the enormous extent of our galaxy in this direction. It is a cluster of low apparent and absolute magnitude. Its apparent photographic magnitude as determined by Christie⁵ with the schraffier kassette is 10.39, giving it an absolute magnitude of only -5.8.

The cluster was put on the observing list of this observatory in 1940, in order that enough plates might be acquired to permit the determination of the periods of Baade's variables. A total of 58 plates has been taken by the writer, who is indebted for instrumental

Fig. 1. Light curves of variables with periods between 0.7 day and 0.57 day.

Fig. 2. Light curves of variables with periods between 0.44 and 0.28 day. Baade's observations are represented by open circles, Sawyer's, by dots.

345

assistance especially to Dr. F. S. Hogg, and to Mr. G. Longworth, Miss Ruth Northcott, Mr. D. K. Norris and Mr. W. S. Armstrong.

About a dozen pairs of these plates have been systematically examined with the blink microscope and four new variables discovered. These all have small ranges of only half a magnitude. The positions of the new variables on the same co-ordinate basis as those found by Baade are given in the remarks to Table I.

Baade published a drawing of the cluster for identification of his variables. Plate XXXI shows a print of this cluster from a David Dunlap plate, on which Sawyer's four new variables are marked, and all of Baade's except No. 1 which is too far from the cluster centre to show. All of the variables except No. 1 are included in the catalogue of 241 stars of this cluster published by Hopmann,⁶ which he later⁷ compared with the Hamburg positions.

All of the variables were estimated on the David Dunlap plates with the use of the magnitude sequence as determined by Baade. Because of the relative sparseness of stars, magnitude estimates in this cluster possess a greater degree of reliability than in the more compact clusters.

The 58 plates from this observatory, along with the 21 observations published by Baade for most of his variables, have permitted the determination of periods for all of the 18 variables. For six variables there are no observations by Baade available. Four of these are the new variables found by the writer. The other two are close double stars, on which Baade could make no reliable estimates from the Hamburg plates. These periods are therefore not so well determined as for most of the other twelve variables.

Table I gives the elements of the variables, including the number in Hopmann's catalogue, the maximum and minimum magnitudes, the mean, an epoch of a well observed maximum, and the period. Remarks on a few individual stars follow the table.

Table II gives the observations of these eighteen variables from the David Dunlap plates, with the phase expressed in thousandths of a day as computed on the basis of the assigned period.

The light curves for all of these stars are shown in Figures 1 and 2, where the stars are arranged in order of decreasing period length. The light curves are of an ordinary type. The interval between Baade's plates and the writer's is only twenty years, but there is not

much suggestion of period change. For one or two variables the two series of observations might be best represented by slightly different periods, but in general the periods appear very constant. No longperiod Cepheids have been found in this cluster. The mean magni-

Fig. 3. Frequency of periods in NGC 5466.

tude of the eighteen variables is $16 \cdot 17$, the same as determined by Baade for eleven variables nineteen years ago.

On the basis of period frequency, NGC 5466 belongs to the double maximum type of cluster to which the writer⁸ has recently called attention. Figure 3 gives a diagram of the period frequency in this cluster. The periods are collected in groups of 0.05 day; the ordinate represents the number of variables having periods in the interval indicated by the abscissa. There appear to be no periods close to half a day in this cluster; the periods fall around two-thirds of a day and one-third of a day. In NGC 5466, the gap in which no periods have been found amounts to 0.13 day. It will be important to discover the reason behind such a frequency distribution of period lengths.

REFERENCES

- (1) Baade, Ham. Mitt., v. 6, no. 27, 1926.
- (2) Shapley and Sawyer, H.B., no. 869, 1929.
- (3) Shapley, P.N.A.S., v. 30, pp. 61-68, 1944.
- (4) Stebbins and Whitford, Mt. W. Cont., no. 547, 1936.
- (5) Christie, Mt. W. Cont., no. 620, 1939.
- (6) Hopmann, A.N., v. 217, p. 333, 1922.
- (7) Hopmann, A.N., v. 229, p. 209, 1927.
- (8) Sawyer, J.R.A.S.C., v. 37, pp. 295-302 (Comm. D.D.O. no. 11), 1944.

Richmond Hill, Ontario, April 25, 1945.

TABLE I

Var.	Hop-		Magnitude	s	Epoch	
No.	mann	Max.	Min.	Mean	Julian Day	Period
		-				
1		15.6	16.7	16.15	30553.674	0.577415
2	64	15.5	16.6	16.05	30554.720	0.588523
3	95	15.4	16.7	16.05	30550.623	0.578065
-4	56	15.5	16.6	16.05	30556.602	0.337968
5	61	15.7	16.7	16.20	20519.697	0.380519
6	202	15.2	16.6	15.90	39786.653	0.62096
7	20	15.7	16.7	16.20	30519.697	0.703423
8	141	15.8	16.7	16.25	30520.617	0.629120
9	148	15.5	16.7	16.10	30170.656	0.685027
10	186	15.8	16.7	16.25	30519.697	0.709273
11	198	15.7	16.7	16.20	30884.625	0.37799
12	134	16.0	16.5	16.25	30880.665	0.2942387
13	83	16.0	16.7	16.35	30556.702	0.341557
14	84	15.8	16.5	16.15	30880.599	0.440041
15	227	15.9	16.5	16.20	30519.618	0.28672
16	37	16.0	16.5	16.25	30553.612	0.29667
17	68	15.9	16.4	16.15	30519.713	0.370117
18	166	16.0	16.7	16.35	30519.697	0.37406

ELEMENTS OF THE VARIABLE STARS IN NGC 5466

REMARKS TO TABLE I

1. This star is very near the edge of the plates, and measures have considerable uncertainty.

4. The large range and steepness of the curve strongly suggest that the period of this star might lie close to half a day. But the writer has not been able to satisfy the existing observations with a related period around 0.51 day.

5. Baade's observations from plates 3475 and 3476 are not plotted as they seem inconsistent with the others.

6. The variable is one component of a close double and no measures are published by Baade.

11. This star is also one component of a double, and Baade could not derive reliable measures from his plates. The related period of 0.60668 day satisfies the observations nearly as well as the period published, but with slightly larger scatter.

12. Baade's observation from plate 3476 is inconsistent and not plotted. 13. Baade's observation from plate 3476 is omitted from plot.

- 15. x'', + 223; y'', + 20. 16. x'', 149; y'', 175. 17. x'', 60; y'', 30. 18. x'', + 44; y'', + 41.

		N	. 1	Nc	. 2	No	. 3	Ž)[No	. 5	Nc	. 6
Plate	Julian Day	Mag.	Phase	Mag.	Phase	Mag.	Phase	Mag.	Phase	Mag.	l'hase	Mag.	l'hase
5697	29785.670	16.0	535	16.2	150	16.5	405	16.4	311	16.0	373	16.2	259
5709	86.653	16.7	364	15.9	544	16.3	232	16.3	280	16.7	214	15.2	000
5806	813.632	16.5	204	16.5	451	15.5	0.42	16.4	222	16.5	176	16.2	278
5818	14.631	16.0	048	16.4	273	16.6	463	16.6	207	16.2	034	15.5	035
5833	15.628	16.6	468	16.3	093	16.6	304	16.6	190	16.5	270	16.3	411
6845	30170.656		386	16.3	2.12	16.5	400	16.4	013	·	275	1	250
6856	71.630	16.5	205	16.1	038	16.3	218	15.8	312	16.4	107	15.6	603
6873	72.700	16.3	120	16.1	520	16.3	132	16.1	030	16.1	036	16.5	431
7853	519.618	15.7	011	16.5	209	16.4	211	16.4	192	16.5	302	16.4	232
7857	. 697	15.9	000	16.6	288	16.6	290	16.2	271	15.7	000	16.4	311
7858	.713	15.9	106	16.6	304	16.6	306	16.0	287	15.8	016	16.3	327
7859	.728	16.0	121	16.6	319	16.6	321	15.8	302	16.0	031	16.5	3.12
7868	20.617	16.6	433	15.8	031	16.0	0.53	16.5	178	16.5	159	15.7	610
7872	.710	16.3	526	16.3	124	16.3	1.46	16.3	271	16.5	252	15.8	082
7936	50.623	16.5	413	16.1	023	15.4	000	16.3	10-1	16.3	10.1	16.2	189
7953	53.612	16.4	515	16.2	069	16.2	660	16.0	052	16.1	040	16.1	073
7958	1.70.	15.6	000	16.5	131	16.5	161	16.3	104	16.2	111	16.3	135
7973	54.640		389	15.9	509	16.4	549	16.2	066	16.5	316	16.6	480
7978	.720	1	469	15.5	000	15.9	051	16.4	146	16.2	396	16.0	560
7987	55.608		202	16.6	299	16.6	360	15.8	020	16.3	142	1	207
7991	.652		246	16.5	3.13	16.5	404	16.0	P90	16.3	186	16.2	251
7995	.720	1	314	16.5	411	16.5	472	16.4	132	16.4	254	16.2	319
8006	56.602		0.41	16.3	116	16.3	198	15.5	000	15.9	375	15.9	580
8009	.626		065	16.3	140	16.3	222	15.5	024	16.0	010	15.8	604
8011	.645		084	16.3	159	16.5	241	15.8	043	16.0	038	15.7	002
8016	.702	1	141	16.5	216	16.6	298	16.2	100	16.1	095	15.8	059
8017	.710		1.19	16.4	224	16.6	306	16.3	108	16.2	103	15.9	067
8802	880.599	16.2	108	16.6	426	16.6	479	16.5	22.4	16.6	171	16.4	435
8805	.627	16.3	136	16.4	45.1	16.6	507	16.3	252	16.6	199		463
8808	.665	16.6	174	16.1	492	16.3	545	15.9	290	16.5	237	16.4	501

TABLE II-OBSERVATIONS OF VARIABLE STARS

Variable Stars in the Globular Cluster NGC 5466 349

		Nc	. 1	No	. 2	Nc	0, 3	Z). 4	Ž	. 5	No	9
	Julian Day	Mag.	Phase										
	30880.694	16.5	203	15.8	521	15.4	574	15.7	319	16.5	266	16.2	530
	.732	16.4	241	15.8	559	15.5	0-1-1	16.1	019	16.4	304		568
	83.599	16.3	221	16.2	483	15.7	011	16.5	182	16.2	127	16.3	331
_	.635	16.4	257	15.9	519	15.8	047	16.4	218	16.4	163	16.4	367
_	.672	16.5	294	15.9	556	15.8	084	16.4	255	16.5	200	16.4	404
-	84.625	16.0	092	16.5	332	16.5	458	16.5	194	16.0	011	16.0	115
	.653	16.0	120	16.5	360	16.5	486	16.5	222	16.2	039	16.0	143
	.685	16.3	152	16.5	392	16.6	518	16.5	254	16.3	071	16.2	175
_	.726	16.4	193	16.5	433	15.9	558	16.4	295	16.3	112	16.3	216
_	.775	16.5	242	16.3	482	15.7	030	15.8	000	16.5	161	16.3	265
-	.800	16.5	267	16.0	507	15.9	055	15.9	0.31	16.6	186	16.5	290
	99.610	15.8	064	15.8	016	16.5	414	16.1	30S	16.5	156	16.2	197
	.630	16.0	08-I	15.8	036	16.5	43.1	15.9	328	16.5	176	16.2	217
	.715	16.3	169	16.2	121	16.6	519	15.8	075	16.4	261	16.5	302
-	.762	16.4	216	16.5	168	15.7	566	16.2	122	16.5	308	16.3	349
	900.608	16.5	485	16.6	425	16.5	256	16.4	293	16.1	012	15.8	574
-	.624	16.6	501	16.6	441	16.6	272	16.3	309	16.0	028	15.5	590
_	.710	15.9	010	16.1	527	16.6	358	15.7	057	16.4	114	15.9	0.55
	01.656		378	16.6	296	16.1	1.18	16.3	327	16.4	299	16.3	380
	33.642		029	16.0	502	16.5	340	16.5	206	16.5	322	16.1	076
	.694		081	15.9	554	16.5	392	16.6	258	16.1	374	16.1	128
	1257.690	16.4	147	16.6	274	16.0	094	16.4	142	16.5	169	15.5	604
	58.678	15.7	558	16.2	08.1	16.6	503	16.1	116	16.0	015	16.2	350
_	.732	15.8	034	16.4	138	15.8	557	16.4	170	16.1	069	16.3	404
	59.619	16.5	344	16.5	437	16.6	288	15.7	0 14	16.4	195	15.9	049
	.656	16.6	381	16.6	474	16.6	325	15.8	081	16.5	232	16.1	086
-	.702	16.6	427	16.2	520	16.7	371	16.2	127	16.5	278	16.1	132
	.772	16.7	497	15.9	001	16.7	441	16.4	197	16.3	348	16.3	202

TABLE II-Continued-OBSERVATIONS OF VARIABLE STARS

350

Publications of the David Dunlap Observatory

		NG	0.7	No	8	No	. 9	No	. 10	No.	11	No	12
Plate	Julian Day	Mag.	Phase										
5697	29785.670	16.4	347	16.6	494	15.8	684	16.2	071	16.7	240	16.3	161
5709	86.653	16.4	626	16.5	219	16.5	297	16.6	3.14	16.1	080	16.3	262
5806	813.632	16.4	172	16.4	146	16.6	560	16.4	371	16.4	231	16.5	171
5818	14.631	16.6	467	16.7	516	16.4	189	15.9	661	16.3	0.00	16.1	287
5833	15.628	16.0	057	16.6	255	16.5	501	16.4	239	16.3	337	16.3	107
6845	30170.656	16.4	560	16.5	459	15.7	000	16.1	631	16.0	054	16.1	283
6856	71.630	16.4	127	16.5	175	16.6	289	16.3	186	16.7	272	16.3	080
6873	72.700	16.5	494	15.8	615	15.9	674	16.6	547	16.5	208	16.2	268
7853	0519.618	16.1	624	16.6	259	16.5	284	16.0	630	16.5	131	16.1	278
7857	.697	15.7	000	16.6	338	16.5	363	15.8	000	16.5	210	16.3	063
7858	.713	15.9	016	16.7	354	16.6	379	15.9	016	16.4	226	16.4	079
7859	.728	15.8	031	16.6	369	16.6	393	15.9	031	16.5	2.11	16.3	1.60
7868	20.617	16.5	217	16.0	000	16.7	597	16.4	211	15.8	374	16.5	100
7872	.710	16.5	310	16.2	093	15.5	005	16.4	304	16.2	080	16.4	193
7936	50.623	15.8	629	16.7	437	16.7	462	16.6	427	16.5	141	16.3	F60
7953	53.612	16.3	151	16.6	281	15.8	026	16.5	579	16.2	106	16.4	1.40
7958	.674	16.4	213	16.6	343	16.0	088	15.9	6.41	16.4	168	16.5	202
7973	54 640	16.5	475	16.1	051	16.5	369	16.3	189	15.7	000	16.2	286
7978	.720	16.6	555	16.4	131	16.6	449	16.4	269	16.0	080	16.2	170
7987	55.608	15.7	036	16.5	389	16.1	652	16.5	447		212	16.3	220
7991	. 652	16.0	080	16.6	433	15.9	011	16.4	491	16.3	256	16.3	121
7995	.720	16.4	148	16.6	501	15.9	079	16.6	559	16.3	324	16.4	189
S006	56.602	16.5	325	16.2	125	16.5	276	15.8	023	16.2	072	16.4	188
8008	. 626	16.6	351	16.4	149	16.5	300	15.9	047	16.3	060	16.3	212
S011	.645	16.6	370	16.4	168	16.6	319	16.0	066	16.3	115	16.3	231
8016	.702	16.6	427	16.6	225	16.6	376	16.2	123	16.5	172	16.1	288
8017	. 710	16.6	435	16.5	233	16.6	384	16.3	131	16.4	180	16.1	002
8802	880.599	16.0	0.16	16.2	125	16.5	255	16.4	591	16.4	132	16.2	228
8805	. 627	16.1	074	16.5	153	16.7	283	16.2	619	16.4	160	16.2	256
8808	.665	16.1	112	16.4	191	16.6	321	15.9	657	16.5	198	16.0	000

Variable Stars in the Globular Cluster NGC 5466 351

TABLE II-Continued-OBSERVATIONS OF VARIABLE STARS

	No	. 7	No	∞.	Nc	0.9	Ž	0. 10	No.	11	No.	12
Julian Day	Mag.	Phase										
30880.694	16.2	141	16.6	220	16.6	350	15.9	686		227	16.3	029
.732	16.4	179	16.5	258	16.6	388	16.0	015	16.3	265	16.3	067
83.599	16.5	232	15.9	609	16.6	515	15.9	045	16.3	108	16.2	286
. 635	16.6	268	16.0	010	16.6	551	16.1	081	16.4	144	16.3	028
.672	16.6	305	16.1	053	16.6	588	16.2	118	16.4	181	16.4	065
84.625	16.6	555	16.6	377	16.3	171	16.5	362	15.7	000	16.5	135
. 653	16.7	583	16.5	405	16.3	199	16.4	390	15.8	028	16.4	163
. 685	16.4	615	16.6	437°	16.4	231	16.4	422	15.9	000	16.4	195
. 726	15.9	656	16.7	478	16.5	272	16.4	463	16.1	101	16.3	236
.775	15.8	705	16.6	527	16.6	321	16.6	512	16.2	150	16.2	285
.800	15.8	026	16.1	552	16.6	346	16.7	537	16.4	175	16.2	016
99.610	16.0	065	16.6	263	16.0	085	16.4	452	16.5	243	16.2	114
.630	16.1	085	16.5	283	16.1	105	16.4	472	16.5	263	16.3	13.4
.715	16.3	170	16.7	368	16.4	190	16.5	557	16.4	348	16.3	219
.762	16.4	217	16.6	415	16.5	237	16.4	604	16.1	017	16.2	266
900.608	16.6	359	16.1	003	16.6	398	15.9	031	16.3	107	16.3	229
.624	16.6	375	16.1	019	16.7	414	15.9	0.47	16.4	123	16.2	245
.710	16.5	461	16.3	105	16.6	500	16.3	133	16.4	209	16.3	037
01.656	15.8	000	16.6	421	15.9	076	16.5	370	16.0	021	16.3	100
33.642	16.5	332	16.6	322	16.6	551	16.4	439	16.4	256	16.2	014
.694	16.6	384	16.7	374	16.6	603	16.4	491	16.4	308	16.3	066
1257.690	16.1	102	16.6	373	16.6	581	16.5	349	16.4	367	16.4	105
58.678	16.4	387	16.2	103	16.4	199	16.1	628	16.4	221	16.4	211
.732	16.5	441	16.6	157	16.5	253	15.8	682	16.5	275	16.2	265
59.619	16.1	624	16.6	415	16.6	455	16.2	150	15.9	028	16.2	269
.656	15.9	661	16.6	452	16.6	492	16.4	187	16.0	065	16.1	012
.702	15.8	004	16.6	498	16.6	528	16.4	233	16.1	111	16.3	0.58
.772	16.1	074	15.9	568	16.6	608	16.6	303	16.4	181	16.4	128

TABLE II-Continued-OBSERVATIONS OF VARIABLE STARS

352

Publications of the David Dunlap Observatory

		No.	13	No.	14	No.	15	No	. 16	No,	17	No.	18
Plate	Julian Day	Mag.	Phase	Mag.	Phase	Mag.	Phase	Mag.	Phase	Mag.	Phase	Mag.	Phase
5697	29785.670	16.7	20.4	16.4	333	16.2	055	16.4	137	16.2	269	ł	253
5709	86.653	16.6	162	16.1	436	16.4	178	16.4	230	16.3	1.42	16.5	114
5806	813.632	16.4	158	16.3	132	16.4	205	16.4	212	16.2	102	16.6	160
5818	14.631	16.6	132	16.4	251.	16.1	057	16.1	024	16.0	361	16.4	037
5833	15.628	16.3	105	16.4	368	16.4	194	16.3	131	16.2	2.47	16.6	286
6845	30170.656	16.5	255	16.3	283	}	263	16.1	045	16.1	333		331
6856	71.630	16.6	20.4	16.3	377	16.3	060	16.3	129	16.4	197	16.4	183
6873	72.700	16.6	250	16.2	127	16.1	300	16.0	013	16.3	157	16.5	131
7853	519.618	16.6	146	16.5	293	16.0	000	16.4	123	16.3	275	16.4	295
7857	769.	16.6	225	16.5	372	16.0	620	16.5	202	16.0	354	16.2	000
7858	.713	16.5	241	16.5	388	16.2	095	16.4	218	15.9	000	16.2	016
7859	.728	16.5	256	16.4	403	16.2	110	16.4	233	16.1	015	16.3	031
7868	20.617	16.5	120	16.1	412	16.4	139	16.2	232	16.3	164	16.7	172
7872	.710	16.6	213	16.0	065	16.4	232	16.1	028	16.4	257	16.6	265
7936	50.623	16.3	0690	16.1	055	16.0	039	16.1	274	16.3	190	16.7	253
7953	53.612	16.1	326	16.1	-10-1	16.5	161	16.0	000	16.4	218	16.5	250
7958	. 674	16.2	046	15.9	025	16.4	223	16.2	062	16.2	280	16.4	312
7973	54.640	16.3	329	16.2	111	16.0	0.12	16.4	138	16.2	136	16.5	155
7978	.720	16.3	290	16.3	191	16.3	122	16.4	218	16.4	216	16.6	235
7987	55.608	16.2	272	16.4	199	16.4	150	16.3	216	16.1	364	16.4	100
7991	.652	16.1	316	16.5	2.13	16.4	194	16.0	260	16.1	038	16.4	045
7995	.720	16.1	0.43	$16 \ 5$	311	16.2	262	16.2	031	16.2	106	16.5	113
8006	56 602	16.4	242	16.5	313	16.2	284	16.0	023	16.4	247	16.7	2.17
8009	026	16.3	266	16.5	337	16.0	021	16.1	047	16.2	271	16.7	271
8011	.645	16.2	285	16.5	356	16.0	0.10	16.0	066	16.2	290	16.6	290
8016	.702	16.0	000	16.4	413	16.1	260	16.3	123	16.0	347	16.4	347
8017	.710	16.1	008	16.3	421	16.0	105	16.2	131	15.9	355	16.4	355
8802	880.599	16.4	101	15.9	000	16.0	001	16.2	057	16.1	022	16.3	308
SS05	.627	16.5	129	16.0	028	16.1	029	16.3	085	16.1	050	16.3	336
5808	.665	16.6	167	16.0	066	16.0	200	16.3	123	16.1	098	16.2	000

5
UN.
~ *
1-7
- participant
\sim
(and the second
-
\simeq
1
~
m.,
-
<u>(+</u>
-
0
5
1 m
64
-
\sim
(mass)
<u></u>
10
~
- the -
-
2
(2)
5
BS
BS
OBS
OBS
OBS
-OBS
-OBS
I-OBS
d-OBS
ed-OBS
ned-OBS
ined-OBS
nued-OBS
inned-OBS
tinued-OBS
ntinued-OBS
ntinued-OBS
ontinued-OBS
Continued-OBS
Continued-OBS
-Continued-OBS
-Continued-OBS
-Continued-OBS
[-Continued-OBS
I-Continued-OBS
11-Continued-OBS
II-Continued-OBS
: II-Continued-OBS
E II-Continued-OBS
LE II-Continued-OBS
LE II-Continued-OBS
3LE II-Continued-OBS
BLE II-Continued-OBS
ABLE II-Continued-OBS
ABLE II-Continued-OBS

RS

Variable Stars in the Globular Cluster NGC 5466 353

STARS	
VARIABLE	
OF	
II-Continued-OBSERVATIONS	
TABLE	

n Day Mag. Phase Mag. Phase Mag. Phase Mag.
0.694 16.7 196 16.1 095 16.1 096
732 16.5 234 16.2 133 16.2 134
5.599 16.2 027 16.5 360 16.4 13
.635 16.3 063 16.1 396 16.3 16
0/2 16.5 100 16.0 433 16.4 2
1625 16.2 028 16.1 066 15.9 0
.653 16.3 056 16.2 094 16.0 0
.685 16.5 088 16.2 126 16.1 0
.726 16.5 129 16.3 167 16.2
.775 16.6 178 16.3 216 16.4
.800 16.6 203 16.4 241 16.4
0.610 16.1 326 16.2 089 16.1
.630 16.0 005 16.2 109 16.4
.715 16.4 090 16.3 194 16.3
.762 16.6 137 16.3 241 16.3
0.608 16.1 300 16.3 207 16.4
.624 16.1 316 16.3 223 16 2
.710 16.4 060 16.4 309 16.0
.656 16.2 023 16.5 375 16.4
5.642 16.6 203 16.4 238 15.9
.694 16.2 255 16.4 290 16.2
690 16.5 113 16.3 416 16.0
3.678 16.5 076 16.0 084 16.3
.732 16.6 130 16.2 138 16.4
0.619 16.2 335 16.2 175 16.1
.656 16.3 030 16.3 182 16.0
.702 16.4 076 16.3 228 16.1
772 16.7 146 16.4 298 16.3

354

Publications of the David Dunlap Observatory